J Med Chem
August 2025
KRAS is one of the most highly validated cancer targets. Here we describe the design and synthesis of two reversible pan-KRAS inhibitors, BI-2865 and BI-2493. From our KRAS inhibitor program, we identified BI-2865, a potent noncovalent KRAS inhibitor that showed cellular activity against a broad spectrum of KRAS alleles and selectivity against HRAS and NRAS.
View Article and Find Full Text PDFKRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS-mutant alleles in patients with cancer. We report that KRAS wild-type (WT)-amplified tumor models are sensitive to treatment with the small-molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent antitumor activity in preclinical models of cancers driven by KRAS-mutant proteins.
View Article and Find Full Text PDFImproving outcomes in acute myeloid leukemia (AML) remains a major clinical challenge. Overexpression of pro-survival BCL-2 family members rendering transformed cells resistant to cytotoxic drugs is a common theme in cancer. Targeting BCL-2 with the BH3-mimetic venetoclax is active in AML when combined with low-dose chemotherapy or hypomethylating agents.
View Article and Find Full Text PDFEscape from apoptosis is one of the major hallmarks of cancer cells. The B-cell Lymphoma 2 (BCL-2) gene family encodes pro-apoptotic and anti-apoptotic proteins that are key regulators of the apoptotic process. Overexpression of the pro-survival member BCL-2 is a well-established mechanism contributing to oncogenesis and chemoresistance in several cancers, including lymphoma and leukemia.
View Article and Find Full Text PDFUnlabelled: Cancer onset and progression involves the accumulation of multiple oncogenic hits, which are thought to dominate or bypass the physiologic regulatory mechanisms in tissue development and homeostasis. We demonstrate in T-cell acute lymphoblastic leukemia (T-ALL) that, irrespective of the complex oncogenic abnormalities underlying tumor progression, experimentally induced, persistent T-cell receptor (TCR) signaling has antileukemic properties and enforces a molecular program resembling thymic negative selection, a major developmental event in normal T-cell development. Using mouse models of T-ALL, we show that induction of TCR signaling by high-affinity self-peptide/MHC or treatment with monoclonal antibodies to the CD3ε chain (anti-CD3) causes massive leukemic cell death.
View Article and Find Full Text PDF