Oxidative stress is one of the key elements in lung-related complications such as cystic fibrosis, acute lung injury, pulmonary hypertension, bronchopulmonary dysplasia, chronic airway diseases, lung cancer, COVID-19, and many others. Antioxidant and anti-inflammatory therapy can be considered as supportive alternatives in their management. However, most naturally derived antioxidants face issues with poor aqueous solubility and stability, which hinder their clinical utility.
View Article and Find Full Text PDFBackground: Premature skin aging and the growing incidence of skin conditions are closely linked to daily exposure to environmental agents. Among all air pollutants, particulate matter (PM) is regarded as one of the most aggressive in terms of skin damage, promoting degradation of extracellular matrix (ECM) components and depletion of the cutaneous antioxidant defense via initiation of oxinflammatory reactions. Moreover, PM can penetrate damaged skin, exacerbating the effect of other pollutants and worsening the symptoms of existing skin conditions.
View Article and Find Full Text PDFCutaneous tissue is one of the main targets of outdoor stressors, and nowadays, the effect of pollution on skin conditions and premature skin ageing has been well correlated, although the exact effect that different pollutants have on the skin has not been well defined, especially when compared to other stressors. Among the air pollutants, UV radiation and particulate matter (PM) have been found among the most aggressive in terms of skin damage, inducing oxinflammatory responses, promoting degradation of extracellular matrix (ECM) components, and compromising the cutaneous defensive barrier. Topical application of technologies able to prevent oxidative damage is still one of the best approaches to protect our skin, and considering the well-known antioxidant network, application of an antioxidant mixture is more recommended than a single compound.
View Article and Find Full Text PDFNaturally available antioxidants offer remarkable medicinal applications in wound healing. However, the encapsulation of these phytoactive moieties into suitable nano-scale drug delivery systems has always been challenging due to their inherent characteristics, such as low molecular weight, poor aqueous solubility, and inadequate skin permeability. Here, we provide a systematic review focusing on the major obstacles hindering the development of various lipid and polymer-based drug transporters to carry these cargos to the targeted site.
View Article and Find Full Text PDFIn this study an in situ forming gel for curcumin and piperine delivery is investigated as a long-lasting strategy in the local treatment of inflammatory and degenerative joint disease, such as osteoarthritis and rheumatoid arthritis. Particularly glyceryl monooleate, in association with phosphatidylcholine and ethanol, were employed. Different ratios between excipients were tested, with the aim to obtain a liquid form suitable for subcutaneous injection, gaining a semisolid consistency in contact with biological fluids.
View Article and Find Full Text PDFAtmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract.
View Article and Find Full Text PDFIntroduction: Background parenchymal enhancement (BPE) refers to the physiological enhancement of breast fibroglandular tissue. This study aimed to determine the agreement of BPE evaluation between contrast enhanced mammography (CEM) and magnetic resonance imaging (MRI) and investigate potential confounders.
Materials And Methods: This retrospective, IRB-approved study included women recalled from screening or with inconclusive findings on mammography and/or ultrasound, who underwent both CEM and MRI between 2018 and 2022.
Examination of the host-associated microbiome in wildlife can provide critical insights into the eco-evolutionary factors driving species diversification and response to disease. This is particularly relevant for isolated populations lacking genomic variation, a phenomenon that is increasingly common as human activities create habitat 'islands' for wildlife. Here, we characterised the gut and otic microbial communities of one such species: Channel Island foxes (Urocyon littoralis).
View Article and Find Full Text PDFPurpose: To explore the prevalence of hypoparathyroidism (HPT), overt and subclinical, in a cohort of adults with Iron Overload Diseases (IOD). Secondary aim was to test the calcium (Ca)-to-phosphorus (P) ratio performance in identifying HPT.
Methods: Single-center, prospective, case-control study.
Purpose: Lesion conspicuity, the relative enhancement of a lesion compared to surrounding tissue, is a new descriptor in the ACR BI-RADS 2022 CEM supplement. We compared lesion conspicuity in contrast-enhanced mammography (CEM) and contrast-enhanced MRI (CE-MRI) in patients with suspicious breast lesions.
Materials And Methods: IRB-approved retrospective study; three blinded readers rated 462 indeterminate or suspicious breast lesions in 388 patients (54.
Objectives: Contrast-enhanced mammography (CEM) is an accurate competitor for contrast-enhanced breast magnetic resonance imaging (CE-MRI), but the examination is limited by the lack of 3D information. Digital breast tomosynthesis (DBT) allows better lesion detection and characterization compared with mammography. The availability of quasi-3D contrast imaging could further improve the performance of CEM.
View Article and Find Full Text PDFPurpose: The purpose of this study was to assess the inter-reader agreement of the breast imaging reporting and data system (BI-RADS) contrast-enhanced mammography (CEM) lexicon.
Materials And Methods: In this IRB-approved, single-center, retrospective study, three breast radiologists, each with different levels of experience, reviewed 462 lesions in 421 routine clinical CEM according to the fifth edition of the BI-RADS lexicon for mammography and to the first version of the BI-RADS lexicon for CEM. Readers were blinded to patient outcomes and evaluated breast and lesion features on low-energy (LE) images (breast density, type of lesion, associated architectural distortion), lesion features on recombined (RC) images (type of enhancement, characteristic of mass enhancement, non-mass enhancement or enhancing asymmetry), and provided a final BI-RADS assessment.
Free Radic Biol Med
November 2024
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) has a superior sensitivity for the diagnosis of breast cancer, leading to lesions primarily detected by MRI. Some of these lesions cannot be identified by targeted second-look ultrasound (SLUS) examinations and are thus referred to as MRI-only lesions. We hypothesize that biologically more aggressive cancers lead to more distinct tissue damage improving visibility on SLUS.
View Article and Find Full Text PDFCorrection for 'Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage' by John Ivarsson , , 2024, , 7849-7864, https://doi.org/10.1039/D4FO01874E.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
TiO nanoparticles loaded with pistachio shell lignin (8 % and 29 % w/w) were prepared by a hydrothermal wet chemistry approach. The efficient interaction at the molecular level of the biomacromolecule and inorganic component was demonstrated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible (UV-Vis), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) analysis. The synergistic combination of lignin and TiO nanoparticles played a key role in the functional properties of the hybrid material, which exhibited boosted features compared to the separate organic and inorganic phase.
View Article and Find Full Text PDFPurpose: Ongoing efforts are focusing on optimizing diffusion-weighted imaging (DWI) as an essential part of breast MRI protocol. Our study aimed to evaluate the effect of contrast media (CM) on the apparent diffusion coefficients (ADC) acquired following current recommendations.
Patient And Methods: Patients who underwent 3 T breast MRI with a histologically verified suspicious lesion were included in this IRB-approved, single-center, cross-sectional retrospective study.
Introduction: Wounds, resulting from traumas, surgery, burns or diabetes, are important medical problems due to the complexity of wound healing process regarding healing times and healthcare costs. Nanosystems have emerged as promising candidates in this field thank to their properties and versatile applications in drugs delivery.
Areas Covered: Lipid-based nanosystems (LBN) are described for wound treatment, highlighting their different behaviors when interacting with the cutaneous tissue.
The present study investigates the possible use of manganese (Mn)-based liposomal formulations for diagnostic applications in imaging techniques such as magnetic resonance imaging (MRI), with the aim of overcoming the toxicity limitations associated with the use of free Mn. Specifically, anionic liposomes carrying two model Mn(II)-based compounds, MnCl (MC) and Mn(HMTA) (MH), were prepared and characterised in terms of morphology, size, loading capacity, and in vitro activity. Homogeneous dispersions characterised mainly by unilamellar vesicles were obtained; furthermore, no differences in size and morphology were detected between unloaded and Mn-loaded vesicles.
View Article and Find Full Text PDFAs the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel co-culture model of human skin explants and primary endothelial cells.
View Article and Find Full Text PDFJ Cell Biol
September 2024
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST.
View Article and Find Full Text PDFBecause the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2024
Successful cell and gene therapy clinical trials have resulted in the US Food and Drug Administration and European Medicines Agency approving their use for treatment of patients with certain types of cancers and monogenetic diseases. These novel therapies, which rely heavily on lentiviral vectors to deliver therapeutic transgenes to patient cells, have driven additional investigations, increasing demand for both pre-clinical and current Good Manufacturing Practices-grade viral vectors. To better support novel studies by improving current production methods, we report the development of a genetically modified HEK293T-based cell line that is null for expression of both Protein Kinase R and Beta-2 microglobulin and grows in suspension using serum-free media, SJ293TS-DPB.
View Article and Find Full Text PDFResearch progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration.
View Article and Find Full Text PDF