Background: Immunocompromised patients show an impaired vaccine response and remain at high risk of severe COVID-19, despite vaccination. Neutralizing monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed for prophylaxis and treatment. The combination tixagevimab/cilgavimab (AZD7442) has been authorized for emergency use as pre-exposure prophylaxis for COVID-19, but data on safety and efficacy in kidney transplant recipients during the Omicron period are limited.
View Article and Find Full Text PDFBetween 15-20% of patients with end stage renal disease (ESRD) do not know the cause of the primary kidney disease and can develop complications after kidney transplantation. We performed a genetic screening in 300 patients with kidney transplantation, or undiagnosed primary renal disease, in order to identify the primary disease cause and discriminate between overlapping phenotypes. We used a custom-made panel for next-generation sequencing (Agilent technology, Santa Clara, CA, USA), including genes associated with Fabry disease, podocytopaties, complement-mediated nephropathies and Alport syndrome-related diseases.
View Article and Find Full Text PDFDiabetic nephropathy (DN) and non-diabetic renal diseases (NDRD) represent intricate challenges in diagnosis and treatment within the context of the global diabetes epidemic. As the prevalence of diabetes continues to escalate, effective management of renal complications becomes paramount. Recent advancements in comprehending the multifaceted nature of renal damage, fueled by insights from histopathological investigations, offer unprecedented prospects for refining diagnostic strategies and customizing therapeutic interventions.
View Article and Find Full Text PDFBackground: COVID-19 in kidney transplant recipients is associated with high morbidity and mortality. In this study we aimed to evaluate: (i) the seroconversion rate after BNT162b2 (Pfizer-BioNTech) SARS-CoV-2 vaccine, (ii) factors associated with humoral response, (iii) clinical outcome of COVID-19 in kidney transplanted patients.
Methods: We enrolled a cohort of 743 kidney transplant recipients followed up from March 2020 until April 2022.
Kidney transplantation is the first-choice treatment for end-stage renal disease (ESRD). Kidney transplant recipients (KTRs) are at higher risk of experiencing a life-threatening event requiring intensive care unit (ICU) admission, mainly in the late post-transplant period (more than 6 months after transplantation). Urosepsis and bloodstream infections account for almost half of ICU admissions in this population; in addition, potential side effects related to immunosuppressive treatment should be accounted for cytotoxic and ischemic changes induced by calcineurin inhibitor (CNI), sirolimus/CNI-induced thrombotic microangiopathy and posterior reversible encephalopathy syndrome.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2023
Several insults can lead to acute kidney injury (AKI) in native kidney and transplant patients, with diabetes critically contributing as pivotal risk factor. High glucose per se can disrupt several signaling pathways within the kidney that, if not restored, can favor the instauration of mechanisms of maladaptive repair, altering kidney homeostasis and proper function. Diabetic kidneys frequently show reduced oxygenation, vascular damage and enhanced inflammatory response, features that increase the kidney vulnerability to hypoxia.
View Article and Find Full Text PDFAtypical hemolytic-uremic syndrome (aHUS) is a severe thrombotic microangiopathy in which kidney involvement is common. aHUS can be due to either genetic or acquired abnormalities, with most abnormalities affecting the alternative complement pathway. Several genetic factors/alterations can drive the clinical presentation, therapeutic response, and risk of recurrence, especially recurrence following kidney transplantation.
View Article and Find Full Text PDFBackground: Delayed graft function (DGF) leads to a reduced graft survival. Donors' features have been always considered as key pathogenic factors in this setting. The aim of our study was to evaluate the recipients' characteristics in the development of DGF.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo.
View Article and Find Full Text PDFMethods Mol Biol
August 2021
miRNAs are short, single-stranded RNA molecules that function as posttranscriptional regulators of gene expression. miRNAs represent ideal biomarkers since they can also circulate in the bloodstream as well as in other biological fluids such as urine, saliva, and cerebrospinal fluid.miRNAs play an important role in the regulation of immune cells including cytotoxic T-lymphocytes.
View Article and Find Full Text PDFBackground: In a previous study, we found that miR-150-5p was specifically downregulated in patients with advanced heart failure (HF). Here, we investigated the long-term prognostic potential of miR-150-5p.
Methods: We studied optimally-treated HF outpatients with reduced ejection fraction.
Unlabelled: Diabetic nephropathy patients (DN) are characterized by increased lysine63 ubiquitination (Lys63-Ub) at the tubular level. Autophagy is deregulated under diabetic conditions, even though the molecular mechanisms and the consequences of this alteration need to be elucidated. The aim of this study was to investigate the link between Lys63-Ub and autophagy in DN and the involvement of these two processes in tubular cell fate.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is a chronic complication of type 2 diabetes and is the most frequent form of chronic kidney disease that can lead to end-stage renal disease. Different pathways, involved in oxidative stress, inflammation, fibrosis and cell death, are responsible for the pathogenesis of DN and regulate the progression of the disease. Ubiquitination is a fundamental pathway in intracellular signaling whose role is emerging in the regulation of molecular processes responsible for several human diseases.
View Article and Find Full Text PDFBackground: Circulating microRNAs (miRs) are promising biomarkers for heart failure (HF). Previous studies have provided inconsistent miR "signatures." The phenotypic and pathophysiologic heterogeneity of HF may have contributed to this inconsistency.
View Article and Find Full Text PDFThe purpose of our study was to evaluate how hyperglycemia (HG) influences Lys63 protein ubiquitination and its involvement in tubular damage and fibrosis in diabetic nephropathy (DN). Gene and protein expression of UBE2v1, a ubiquitin-conjugating E2-enzyme variant that mediates Lys63-linked ubiquitination, and Lys63-ubiquitinated proteins increased in HK2 tubular cells under HG. Matrix-assisted laser desorption/ionization-time of flight/tandem mass spectrometry identified 30 Lys63-ubiquitinated proteins, mainly involved in cellular organization, such as β-actin, whose Lys63 ubiquitination increased under HG, leading to cytoskeleton disorganization.
View Article and Find Full Text PDFDiabetic nephropathy (DN), a microvascular complication occurring in approximately 20-40% of patients with type 2 diabetes mellitus (T2DM), is characterized by the progressive impairment of glomerular filtration and the development of Kimmelstiel-Wilson lesions leading to end-stage renal failure (ESRD). The causes and molecular mechanisms mediating the onset of T2DM chronic complications are yet sketchy and it is not clear why disease progression occurs only in some patients. We performed a systematic analysis of the most relevant studies investigating genetic susceptibility and specific transcriptomic, epigenetic, proteomic, and metabolomic patterns in order to summarize the most significant traits associated with the disease onset and progression.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is the major cause of chronic kidney disease in developed countries and contributes significantly to increased morbidity and mortality among diabetic patients. Morphologically, DN is characterized by tubulo-interstitial fibrosis, thickening of the glomerular basement membrane and mesangial expansion mainly due to accumulation of extracellular matrix (ECM). ECM turnover is regulated by metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs) activities.
View Article and Find Full Text PDFThe prevalence of type 2 diabetes mellitus is growing exponentially in Western countries, and the incidence of this condition is today increasing worldwide. Other than for cardiovascular complications, diabetes is particularly challenging for the kidney's health and proper function. Prolonged exposure of the kidneys to hyperglycemia in fact often results in a clinical complication called diabetic glomerulosclerosis, also known as diabetic nephropathy.
View Article and Find Full Text PDFInt J Biochem Cell Biol
May 2013
Adenylate kinases regulate adenine nucleotide levels and are present in different intracellular compartments. These enzymes also participate in the activation of pharmacologically active nucleoside and nucleotide analogs. We have in the present study identified the ninth isoform of the adenylate kinase family of enzymes and accordingly named the protein adenylate kinase 9 (AK9).
View Article and Find Full Text PDFADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3(-/-) mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3(-/-) mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased.
View Article and Find Full Text PDFThe p53 tumor suppressor gene is inactivated by point mutation in a large fraction of human tumors, allowing evasion of apoptosis and tumor progression. p53 mutation is often associated with increased resistance to therapy. Pharmacological reactivation of mutant p53 is an attractive therapeutic strategy.
View Article and Find Full Text PDFSerum collected in a time-course mode during the pregnancy of a group of heifers was analyzed by 2-DE under various experimental conditions to optimize resolution of all protein spots. Changes in the levels of some components were detected during the last phase of pregnancy and early postpartum. These included a decrease of alpha2-HS-glycoprotein, an increase of alpha1-antichymotrypsin and, with a much larger and more abrupt variation, of orosomucoid and haptoglobin.
View Article and Find Full Text PDFElectrophoresis
March 2006
In this case report we studied alterations in mitochondrial proteins in a patient suffering from recurrent profound muscle weakness, associated with ethylmalonic-adipic aciduria, who had benefited from high dose of riboflavin treatment. Morphological and biochemical alterations included muscle lipid accumulation, low muscle carnitine content, reduction in fatty acid beta-oxidation and reduced activity of complexes I and II of the respiratory chain. Riboflavin therapy partially or totally reversed these symptoms and increased the level of muscle flavin adenine dinucleotide, suggesting that aberrant flavin cofactor metabolism accounted for the disease.
View Article and Find Full Text PDF