Publications by authors named "Florian Geltinger"

Naked-mole rats (NMRs; ) exhibit unique biological traits such as resistance to cancer, exceptional longevity, and high tolerance to low-oxygen environments. However, little is known about the lung structure of this eusocial species. Here, the lungs of adult NMRs were qualitatively examined using light and electron microscopy, followed by structural quantification of the alveolar region by means of stereology.

View Article and Find Full Text PDF

The mortality associated with acute lung injury (ALI) increases with age. Alveolar epithelial type II (AEII) cells are the progenitor cells of the alveolar epithelium and are crucial for repair after injury. We hypothesize that telomere dysfunction-mediated AEII cell senescence impairs regeneration and promotes the development of ALI.

View Article and Find Full Text PDF

Protein aggregates arise naturally under normal physiological conditions, but their formation is accelerated by age or stress-induced protein misfolding. When the stressful event dissolves, these aggregates are removed by mechanisms, such as aggrephagy, chaperone-mediated autophagy, refolding attempts, or the proteasome. It was recently shown that mitochondria in yeast cells may support these primarily cytosolic processes.

View Article and Find Full Text PDF

Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components.

View Article and Find Full Text PDF

Lipid droplets (LDs) were considered as a mere lipid storage organelle for a long time. Recent evidence suggests that LDs are in fact distinct and dynamic organelles with a specialized proteome and functions in many cellular roles. As such, LDs contribute to cellular signaling, protein and lipid homeostasis, metabolic diseases and inflammation.

View Article and Find Full Text PDF

A yeast deletion mutation in the nuclear-encoded gene, , which codes for a mitochondrial ribosomal protein, led to slow growth on glucose, the inability to grow on glycerol or ethanol, and loss of mitochondrial DNA and respiration. We noticed that yeast readily obtains secondary mutations that suppress aspects of this phenotype, including its growth defect. We characterized and identified a dominant missense suppressor mutation in the gene.

View Article and Find Full Text PDF

Originally Lipid droplets (LDs) were considered as being droplets for lipid storage only. Increasing evidence, however, demonstrates that LDs fulfill a pleiotropy of additional functions. Among them is the modulation of protein as well as lipid homeostasis.

View Article and Find Full Text PDF

In recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae.

View Article and Find Full Text PDF

In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two -helices, which we termed V-domain according to the predicted structure.

View Article and Find Full Text PDF