Publications by authors named "Fengfa Lai"

Chromophoric dissolved organic matter (CDOM), characterized by unique optical properties, is an essential indicator for understanding aquatic organic matter dynamics within global carbon cycles. Soil erosion, a major source of CDOM received by lakes, transports terrestrial organic matter to water bodies, altering sources, bioavailability and molecular complexity of CDOM significantly. Yet, the spatial patterns of CDOM in lakes from different soil erosion regions are still unknown.

View Article and Find Full Text PDF

The pollution or eutrophication affected by dissolved organic matter (DOM) composition and sources of inland waters had attracted concerns from the public and government in China. Combined with remote sensing techniques, the fluorescent DOM (FDOM) parameters accounted for the important part of optical constituent as chromophoric dissolved organic matter (CDOM) was a useful tool to trace relative DOM sources and assess the trophic states for large-scale regions comprehensively and timely. Here, the objective of this research is to calibrate and validate a general model based on Landsat 8 OLI product embedded in Google Earth Engine (GEE) for deriving humification index (HIX) based on EEMs in lakes across China.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays an essential role in the global carbon biogeochemical cycle for aquatic ecosystems. The complexity of DOM compounds contributes to the accurate monitoring of its sources and compositions from large-scale patterns to microscopic molecular groups. Here, this study demonstrates the diverse sources and compositions for humic-rich lakes and protein-rich lakes for large-scale regions across China with the linkage to optical components and molecular high-resolution mass spectrometry properties.

View Article and Find Full Text PDF