Publications by authors named "Fabrice R A Onofri"

Anomalous reflection and tunneling contributions of the high-frequency forward light scattering by non-absorbing spheres are modeled by the scalar diffraction of two complex annuli-one for TM and TE polarizations. Their complex radii, which depend on the refractive indices and particle size, are derived from the complex angular momentum (CAM) method, thus suggesting possible extensions to non-electromagnetic scattering. Coupled with the diffraction of a disk, and a geometrical optics approximation (GOA) for the refractive contributions, we propose an accurate hybrid model that requires one to two orders of magnitude less computational time than the Lorenz-Mie theory (LMT) in the near field, a crucial improvement for, e.

View Article and Find Full Text PDF

The rainbow patterns of oblate spheroidal drops have been observed in experiments nearly forty years ago [Nature312, 529 (1984)10.1038/312529a0]. However, the prediction for those complex patterns has been a challenge for conventional light scattering models.

View Article and Find Full Text PDF

The analysis of nano- and microparticle suspensions with micro systems affords improved space-time yields, selectivity, reaction residence times and conversions capabilities. These capabilities are of primary importance in various fields of research and industry. The few microfluidic lab-on-a-chip approaches that have been developed are essentially designed to analyse fluid phases or involve the use of benchtop particle sizing instruments.

View Article and Find Full Text PDF

The scattering patterns near the primary rainbow of oblate drops are simulated by extending the vectorial complex ray model (VCRM) [Opt. Lett.36, 370 (2011)OPLEDP0146-959210.

View Article and Find Full Text PDF

The image of the photonic jet (also called caustic) formed by a large, transparent, and spherical particle, reconstructed by digital in-line holography, is shown to be similar to the Airy pattern observed at the focus of a diffraction-limited lens. The analysis of this image, real or virtual depending on whether the particle relative refractive index is above or below one, allows characterizing the particle composition via its refractive index. Experiments clearly demonstrate the value of this method for the simultaneous 3D characterization and differentiation of the dynamics, size, and composition of gas, liquid, and solid particles in multiphase flows.

View Article and Find Full Text PDF

The capabilities and resolution of the rainbow technique were extended to estimate the size distribution and composition of droplets in liquid-liquid systems. For these droplets, essentially characterized by a low relative refractive index (m≈1.001-1.

View Article and Find Full Text PDF

A new and computationally efficient approach is proposed for determining the refractive index of spherical and transparent particles, in addition to their size and 3D position, using digital in-line holography. The method is based on the localization of the maximum intensity position of the photonic jet with respect to the particle center retrieved from the back propagation of recorded holograms. Rigorous electromagnetic calculations and experimental results demonstrate that for liquid-liquid systems and droplets with a radius > 30µm, a refractive index measurement with a resolution inferior to 4 × 10 is achievable, revealing a significant potential for the use of this method to investigate multiphase flows.

View Article and Find Full Text PDF

Organic Photo Sensor (OPS) technology allows printing on conformable plastic-like substrates complex-shaped, arbitrarily-sized and pre-aligned photosensitive elements. This article reports, to the best of our knowledge, the first investigation to implement this emerging technology for Multi-Angle Light Scattering (MALS) characterization of nano- and microparticle suspensions. Monte Carlo and Lorenz-Mie theory calculations as well as preliminary experimental results on latex suspensions clearly demonstrate the potential of the proposed approach.

View Article and Find Full Text PDF

We report the first experimental validation of the Vectorial Complex Ray Model (VCRM) using the scattering patterns of large oblate droplets trapped in an acoustic field. The two principal radii and refractive index of the droplets are retrieved with a minimization method that involves VCRM predictions and experimental light scattering patterns. The latter are recorded in the droplet equatorial plane between the primary rainbow region and the associated hyperbolic-umbilic diffraction catastrophe.

View Article and Find Full Text PDF

A first-order approximation is derived for the near-critical-angle scattering of a large spheroidal bubble illuminated by a plane wave propagating along the bubble axis of symmetry. The intensity of the far-field scattering pattern is expressed as a function of the relative refractive index and the two radii of curvature of the spheroidal bubble at the critical impact point.

View Article and Find Full Text PDF

We report experimental investigations on the influence of various optical effects on the far-field scattering pattern produced by a cloud of optical bubbles near the critical scattering angle. Among the effects considered, there is the change of the relative refractive index of the bubbles (gas bubbles or some liquid-liquid droplets), the influence of intensity gradients induced by the laser beam intensity profile and by the spatial filtering of the collection optics, the coherent and multiple scattering effects occurring for densely packed bubbles, and the tilt angle of spheroidal optical bubbles. The results obtained herein are thought to be fundamental for the development of future works to model these effects and for the extension of the range of applicability of an inverse technique (referenced herein as the critical angle refractometry and sizing technique), which is used to determine the size distribution and composition of bubbly flows.

View Article and Find Full Text PDF