Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis.
View Article and Find Full Text PDFAntioxidants (Basel)
July 2023
Malaria is still the most important parasitic infectious disease. Numerous substances are known to have antimalarial activity; among them, artemisinin is the most widely used one, and artemisinin-based combination therapy (ACT) is recommended for the treatment of malaria. Antitumor, immunomodulatory, and other therapeutic applications of artemisinin are under extensive study.
View Article and Find Full Text PDFInt J Mol Sci
June 2023
Malaria is a frequent parasitic infection becomes life threatening due to the disequilibrated immune responses of the host. Avid phagocytosis of malarial pigment hemozoin (HZ) and HZ-containing Plasmodium parasites incapacitates monocyte functions by bioactive lipoperoxidation products 4-hydroxynonenal (4-HNE) and hydroxyeicosatetraenoic acids (HETEs). CYP4F conjugation with 4-HNE is hypothesised to inhibit ω-hydroxylation of 15-HETE, leading to sustained monocyte dysfunction caused by 15-HETE accumulation.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2022
In , the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making GluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound -(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective GluPho inhibitor with robust nanomolar activity against recombinant GluPho, G6PD, and P.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2021
Malarial pigment hemozoin (HZ) generates the lipoperoxidation product 4-hydroxynonenal (4-HNE), which is known to cause dysregulation of the immune response in malaria. The inhibition of granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent differentiation of dendritic cells (DC) by HZ and 4-HNE was previously described in vitro, and the GM-CSF receptor (GM-CSF R) was hypothesised to be a primary target of 4-HNE in monocytes. In this study, we show the functional impact of HZ on GM-CSF R in monocytes and monocyte-derived DC by (i) impairing GM-CSF binding by 50 ± 9% and 65 ± 14%, respectively ( = 3 for both cell types); (ii) decreasing the expression of GM-CSF R functional subunit (CD116) on monocyte's surface by 36 ± 11% ( = 6) and in cell lysate by 58 ± 16% ( = 3); and (iii) binding of 4-HNE to distinct amino acid residues on CD116.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
One complication of malaria is increased susceptibility to invasive bacterial infections. infections impair host immunity to non-Typhoid (NTS) through heme-oxygenase I (HO-I)-induced release of immature granulocytes and myeloid cell-derived IL-10. Yet, it is not known if these mechanisms are specific to NTS.
View Article and Find Full Text PDFThe aim of this study was to assess the oxidative stress status in eyes affected by synchysis scintillans and to compare it to vitreoretinal disorders without synchysis scintillans. Human aqueous and vitreous humors were obtained during vitrectomy from thirty-seven otherwise healthy patients that were randomly chosen among patients that had to undergo a 25-gauge vitrectomy from the central vitreous cavity, for either synchysis scintillans ( = 16) or vitreoretinal disorders without synchysis scintillans ( = 21), such as idiopathic epimacular membrane ( = 12), macular hole ( = 5), or rhegmatogenous retinal detachment ( = 4). The redox parameters thiobarbituric acid reactive substances (TBARS), a measurement of lipid peroxidation, nitrite concentration, an estimate of nitric oxide (NO) production, 4-hydroxynonenal (4-HNE)-protein conjugates, a structural protein modification by lipid peroxidation product 4-HNE, and the antioxidative activities of Cu,Zn-superoxide dismutase (SOD), and catalase were measured in aqueous and vitreous humors and compared between synchysis scintillans affected and not-affected patients.
View Article and Find Full Text PDFNeutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis.
View Article and Find Full Text PDFBackground: In Vietnam, a rapid decline of P. falciparum malaria cases has been documented in the past years, the number of Plasmodium falciparum malaria cases has rapidly decreased passing from 19.638 in 2012 to 4.
View Article and Find Full Text PDFAim: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors.
Methods: Thirty-six patients who had to undergo a 25 gauge pars plana vitrectomy due to vitreoretinal disorders were enrolled, 15 of them underwent a Q-switched Nd:YAG laser capsulotomy 7d before vitrectomy due to posterior capsule opacification (PCO) (Nd:YAG laser group) while the remaining 21 patients were not laser treated before vitrectomy (no Nd:YAG laser group). Samples of the aqueous and vitreous humors were collected during vitrectomy from all patients for the assessment of oxidative parameters which were compared between the Nd:YAG laser group and no Nd:YAG laser group.
The original version of this Article contained errors in Fig. 3. In panel a, bars from a chart depicting the percentage of antibody-positive individuals in non-infectious and infectious groups were inadvertently included in place of bars depicting the percentage of infectious individuals, as described in the Article and figure legend.
View Article and Find Full Text PDFInfection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray.
View Article and Find Full Text PDFBand 3 (also known as the anion exchanger, SLCA1, AE1) constitutes the major attachment site of the spectrin-based cytoskeleton to the erythrocyte's lipid bilayer and thereby contributes critically to the stability of the red cell membrane. During the intraerythrocytic stage of 's lifecycle, band 3 becomes tyrosine phosphorylated in response to oxidative stress, leading to a decrease in its affinity for the spectrin/actin cytoskeleton and causing global membrane destabilization. Because this membrane weakening is hypothesized to facilitate parasite egress and the consequent dissemination of released merozoites throughout the bloodstream, we decided to explore which tyrosine kinase inhibitors might block the kinase-induced membrane destabilization.
View Article and Find Full Text PDFThe data show the frequencies by which the amino acid residues lysine, histidine and cysteine of six proteins of the malaria parasite Plasmodium falciparum are post-translationally modified by the lipoperoxydation endproduct 4-hydroxynonenal after challenging the parasitized red blood cell with plakortin. Plakortin is an antimalarial endoperoxide whose molecular anti-parasitic effect is described in Skorokhod et al. (2015) [1].
View Article and Find Full Text PDFPlakortin, a polyketide endoperoxide from the sponge Plakortis simplex has antiparasitic activity against P. falciparum. Similar to artemisinin, its activity depends on the peroxide functionality.
View Article and Find Full Text PDFPlasmodium falciparum (P. falciparum)-induced effects on the phenotype of human dendritic cells (DC) could contribute to poor induction of long-lasting protective immunity against malaria. DC ability to present antigens to naïve T cells, thus initiating adaptive immune responses depends on complex switches in chemokine receptors, production of soluble mediators and expression of molecules enabling antigen-presentation and maturation.
View Article and Find Full Text PDFOxidative stress plays an important role in the pathogenesis of falciparum malaria, a disease still claiming close to 1 million deaths and 200 million new cases per year. Most frequent complications are severe anemia, cerebral malaria, and immunodepression, the latter being constantly present in all forms of malaria. Complications are associated with oxidative stress and lipoperoxidation.
View Article and Find Full Text PDFMost studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P.
View Article and Find Full Text PDFAims: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency.
Results: We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation.
Malaria is a global disease that clinically affects more than two hundred million people annually. Despite the availability of effective antimalarials, mortality rates associated with severe complications are high. Hepatopathy is frequently observed in patients with severe malarial disease and its pathogenesis is poorly understood.
View Article and Find Full Text PDFNatural hemozoin, nHZ, is avidly phagocytosed in vivo and in vitro by human monocytes. The persistence of the undigested β-hematin core of nHZ in the phagocyte lysosome for long periods of time modifies several cellular immune functions. Here we show that nHZ phagocytosis by human primary monocytes severely impaired their chemotactic motility toward MCP-1, TNF, and FMLP, by approximately 80% each, and their diapedesis across a confluent human umbilical vein endothelial cell layer toward MCP-1 by 45±5%.
View Article and Find Full Text PDFBackground: Advanced oxidation protein products (AOPP) are newly identified efficient oxidative stress biomarkers. In a longitudinal birth cohort the effects were investigated of genetic polymorphisms in five oxidative pathway genes on AOPP levels.
Methods: This study is part of a three-arm randomized, double-blind, placebo-controlled trial.
Converging in vitro evidence and clinical data indicate that oxidative stress may play important roles in Plasmodium falciparum malaria, notably in the pathogenesis of severe anaemia. However, oxidative modifications of the red blood cell (RBC)-membrane by 4-hydroxynonenal (4-HNE) and haemoglobin-binding, previously hypothesized to contribute mechanistically to the pathogenesis of clinical malaria, have not yet been tested for clinical significance. In 349 non-immune Mozambican newborns recruited in a double-blind placebo-controlled chemoprophylaxis trial, oxidative markers including 4-HNE-conjugates and membrane-bound haemoglobin were longitudinally assessed from 2·5 to 24 months of age, at first acute malaria episode and in convalescence.
View Article and Find Full Text PDF