Background: Conventional dendritic cells (cDCs), are central to antitumour immunity, but their low prevalence in tumours limits the efficacy of immunotherapies. FLT3L is a key growth factor regulating cDCs development in the bone marrow. It expands cDCs when administered exogenously, favouring antitumour T cell priming and tumour control.
View Article and Find Full Text PDFAs an immune evasion strategy, MICA and MICB, the major histocompatibility complex class I homologs, are proteolytically cleaved from the surface of cancer cells leading to impairment of CD8 + T cell- and natural killer cell-mediated immune responses. Antibodies that inhibit MICA/B shedding from tumors have therapeutic potential, but the optimal epitopes are unknown. Therefore, we developed a high-resolution, high-throughput glycosylation-engineered epitope mapping (GEM) method, which utilizes site-specific insertion of N-linked glycans onto the antigen surface to mask local regions.
View Article and Find Full Text PDF