Publications by authors named "Evan R Antoniuk"

Polymer processing, purification, and self-assembly have significant roles in the design of polymeric materials. Understanding how polymers behave in solution (, their solubility, chemical properties, ) can improve our control over material properties their processing-structure-property relationships. For many decades the polymer science community has relied on thermodynamic and physics-based models to aid in this endeavor, but all rely on disparate data sets and use-case scenarios.

View Article and Find Full Text PDF

Interconnect materials play the critical role of routing energy and information in integrated circuits. However, established bulk conductors, such as copper, perform poorly when scaled down beyond 10 nm, limiting the scalability of logic devices. Here, a multi-objective search is developed, combined with first-principles calculations, to rapidly screen over 15,000 materials and discover new interconnect candidates.

View Article and Find Full Text PDF

Accurately predicting new polymers' properties with machine learning models apriori to synthesis has potential to significantly accelerate new polymers' discovery and development. However, accurately and efficiently capturing polymers' complex, periodic structures in machine learning models remains a grand challenge for the polymer cheminformatics community. Specifically, there has yet to be an ideal solution for the problems of how to capture the periodicity of polymers, as well as how to optimally develop polymer descriptors without requiring human-based feature design.

View Article and Find Full Text PDF

The high brightness, low emittance electron beams achieved in modern X-ray free-electron lasers (XFELs) have enabled powerful X-ray imaging tools, allowing molecular systems to be imaged at picosecond time scales and sub-nanometer length scales. One of the most promising directions for increasing the brightness of XFELs is through the development of novel photocathode materials. Whereas past efforts aimed at discovering photocathode materials have typically employed trial-and-error-based iterative approaches, this work represents the first data-driven screening for high brightness photocathode materials.

View Article and Find Full Text PDF

Two-dimensional (2D) materials derived from van der Waals (vdW)-bonded layered crystals have been the subject of considerable research focus, but their one-dimensional (1D) analogues have received less attention. These bulk crystals consist of covalently bonded multiatom atomic chains with weak van der Waals bonds between adjacent chains. Using density-functional-theory-based methods, we find the binding energies of several 1D families of materials to be within typical exfoliation ranges possible for 2D materials.

View Article and Find Full Text PDF

The stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB, Pr P(C H )BCy (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH }] and [PB{GeH }] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1) the ability to recycle the FLP phosphine-borane ligand (PB) after element deposition, and 2) the single-source precursor [PB{SiH }] deposits Si films at a record low temperature from solution (110 °C).

View Article and Find Full Text PDF

We report a solid-state Li-ion electrolyte predicted to exhibit simultaneously fast ionic conductivity, wide electrochemical stability, low cost, and low mass density. We report exceptional density functional theory (DFT)-based room-temperature single-crystal ionic conductivity values for two phases within the crystalline lithium-boron-sulfur (Li-B-S) system: 62 (+9, -2) mS cm in LiBS and 80 (-56, -41) mS cm in LiBS. We report significant ionic conductivity values for two additional phases: between 0.

View Article and Find Full Text PDF

In principle, a nearly endless number of unique van der Waals heterostructures can be created through the vertical stacking of two-dimensional (2D) materials, resulting in unprecedented potential for material design. However, this widely employed synthetic method for generating van der Waals heterostructures is slow, imprecise, and prone to introducing interlayer contaminants when compared with synthesis methods that are scalable to industrially relevant scales. Herein, we study the properties of a new class of layered bulk inorganic materials that has recently been reported that we call assembly-free bulk layered inorganic heterostructures, wherein the individual layers are of dissimilar chemical composition, distinguishing them from commonly studied layered materials.

View Article and Find Full Text PDF

We discover the chemical composition of over 1000 materials that are likely to exhibit layered and 2D phases but have yet to be synthesized. This includes two materials our calculations indicate can exist in distinct structures with different band gaps, expanding the short list of 2D phase-change materials. Whereas databases of over 1000 layered materials have been reported, we provide the first full database of materials that are likely layered but are yet to be synthesized, providing a roadmap for the synthesis community.

View Article and Find Full Text PDF