One of the major factors inducing senescence is reactive oxygen species (ROS) produced from dysfunctional mitochondria. Therapeutic strategies that reduce mitochondrial ROS generation are considered essential for rejuvenating senescence, but effective methods have not yet been established. Here, we screened phenylpropanoids (PPs), secondary metabolites produced in response to oxidative stress in plants, and identified dehydroacteoside as a potential candidate.
View Article and Find Full Text PDFCancer cells are characterized by apoptosis evasion and uncontrolled cell cycle progression. To combat these characteristics, efforts have been made to find novel natural-source anticancer compounds. The aim of this work is to find new anticancer compounds in () mycelial culture extracts.
View Article and Find Full Text PDFAntioxidants (Basel)
April 2023
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2023
The establishment of cell lines with a high protein production is the most crucial objective in the field of biopharmaceuticals. To this end, efforts have been made to increase transgene expression through promoter improvement, but the efficiency or stability of protein production was insufficient for use in commercial production. Here, we developed a novel strategy to increase the efficiency and stability of protein production by hybridizing a promoter that exhibits higher expression levels at the transient level with a promoter that exhibits higher stability at the stable level.
View Article and Find Full Text PDFSenescence is a phenomenon defined by alterations in cellular organelles and is the primary cause of aging and aging-related diseases. Recent studies have shown that oncogene-induced senescence is driven by activation of serine/threonine protein kinases (AKT1, AKT2 and AKT3). In this study, we evaluated twelve AKT inhibitors and revealed GDC0068 as a potential agent to ameliorate senescence.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
November 2022
Coxsackievirus B3 (CVB3) is a single-stranded RNA virus that belongs to the genus. CVB3 is a human pathogen associated with serious conditions such as myocarditis, dilated cardiomyopathy, and pancreatitis. However, there are no therapeutic interventions to treat CVB3 infections.
View Article and Find Full Text PDFOne of the biggest obstacles in cancer treatment is the development of chemoresistance. To overcome this, attempts have been made to screen novel anticancer substances derived from natural products. The purpose of this study is to find new anticancer candidates in the mycelium culture extract of mushrooms belonging to .
View Article and Find Full Text PDFOncogene-induced senescence (OIS), characterized by irreversible cell cycle arrest by oncogene activation, plays an important role in the pathogenesis of aging and age-related diseases. Recent research indicates that OIS is driven by activation of mitogen-activated protein kinase (MAPK). However, it is not apparent whether MAPK inhibition helps to recover senescence.
View Article and Find Full Text PDFAging (Albany NY)
January 2022
Senescence is a distinct set of changes in the senescence-associated secretory phenotype (SASP) and leads to aging and age-related diseases. Here, we screened compounds that could ameliorate senescence and identified an oxazoloquinoline analog (KB1541) designed to inhibit IL-33 signaling pathway. To elucidate the mechanism of action of KB1541, the proteins binding to KB1541 were investigated, and an interaction between KB1541 and 14-3-3ζ protein was found.
View Article and Find Full Text PDFMitochondria are one of organelles that undergo significant changes associated with senescence. An increase in mitochondrial size is observed in senescent cells, and this increase is ascribed to the accumulation of dysfunctional mitochondria that generate excessive reactive oxygen species (ROS). Such dysfunctional mitochondria are prime targets for ROS-induced damage, which leads to the deterioration of oxidative phosphorylation and increased dependence on glycolysis as an energy source.
View Article and Find Full Text PDF