Publications by authors named "Etienne Bilgo"

Reliable estimates of the age structure of malaria mosquitoes would aid evaluation of the efficacy of vector control and inform models of malaria transmission. We have previously shown that rapid evaporative ionisation mass spectrometry (REIMS) could determine the age and species of laboratory reared mosquitoes and culicine mosquitoes from a river estuary in the United Kingdom. Here we investigated the robustness of this methodology by introducing additional environmental, genetic and physiological diversity in experiments using laboratory reared and field collected Anopheles gambiae mosquitoes.

View Article and Find Full Text PDF

Background: spp. based mosquito control products are among the most investigated and could potentially serve as promising complements to chemical insecticides. However, limited knowledge exists on the implementation of this biocontrol tool in conjunction with primary insecticide-based strategies to achieve synergy.

View Article and Find Full Text PDF

Spread of insecticides resistance threatens the control of malaria. In this context, biological control using an endosymbiotic bacterium Wolbachia is being explored as a complementary method for its control. However, for optimal use of this bacterium in biocontrol strategies, it is imperative to characterize it.

View Article and Find Full Text PDF

Unlabelled: A newly discovered microsporidian, sp. MB (MB), was recently found to block transmission in mosquitoes from Kenya. Here, we describe the lifecycle of the first laboratory colony of with MB, originating from western Burkina Faso.

View Article and Find Full Text PDF

Background: Genetic control tools, such as the sterile insect technique (SIT) and genetically modified mosquitoes (GMMs), require releasing males comparable to their wild counterparts. Ensuring that released males do not exhibit higher insecticide resistance is critical. This study assessed the phenotypic characteristics and insecticide susceptibility of key dengue and malaria vector species.

View Article and Find Full Text PDF

Background: Wolbachia is an endosymbiont bacterium known to stimulate host immunity against arboviruses and protozoa. Côte d'Ivoire is in a malaria-endemic region, and has experienced several dengue epidemics in recent decades as well. In order to help reduce the transmission of pathogens by mosquito vectors, we studied the prevalence of Wolbachia and the distribution of Cytoplasmic incompatibility factors (Cif) genes in different mosquito species caught in the wild in Cote d'Ivoire.

View Article and Find Full Text PDF

Entomopathogenic fungi engineered to express insect-specific neurotoxins have demonstrated potential as microbial control agents against malaria mosquitoes. Currently, the primary application method is via direct contact of spores with indoor resting mosquitoes. However, many malaria-transmitting mosquitoes feed and rest outdoors.

View Article and Find Full Text PDF

Vector mosquito control is an integral part of malaria control. The global emergence of insecticide resistance in malaria-transmitting has become an impediment and has created an urgent need for novel mosquito control approaches. Here, we show that a biopesticide derived from the soil-dwelling bacterium sp.

View Article and Find Full Text PDF

Mosquitoes of the genus are the most important arthropod disease vector. Dengue virus (DENV) and Chikungunya virus (CHIKV) are the main arboviruses distributed throughout the world. Based on entomo-virological surveillance, appropriate public health strategies can be adopted to contain cases and control outbreaks.

View Article and Find Full Text PDF

Background: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso.

View Article and Find Full Text PDF

Background: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in species from Burkina Faso.

View Article and Find Full Text PDF

Symbiotic and pathogenic microorganisms such as bacteria and fungi represent promising alternatives to chemical insecticides to respond to the rapid increase of insecticide resistance and vector-borne disease outbreaks. This study investigated the interaction of two strains of Wolbachia, wAlbB and wAu, with the natural entomopathogenic fungi from Burkina Faso Metarhizium pingshaense, known to be lethal against Anopheles mosquitoes. In addition to showing the potential of Metarhizium against African Aedes aegypti wild-type populations, our study shows that the wAlbB and wAu provide a protective advantage against entomopathogenic fungal infections.

View Article and Find Full Text PDF

The recently released 2023 World Malaria Report sheds light on an alarming reality: despite preventive measures, malaria remains a severe issue in Burkina Faso. As researchers in the field working on malaria in Burkina Faso, the assessment suggests significant underreporting, especially in remote areas with limited healthcare access. In addition, the confusion arising from similar diseases, such as dengue, further complicates the situation.

View Article and Find Full Text PDF
Article Synopsis
  • Dengue is becoming a bigger health problem around the world, especially in Africa, where it's often not diagnosed correctly.
  • A special method using Wolbachia bacteria to control dengue is being tried in Asia and the Americas but hasn't been used in Africa yet.
  • Research shows that a specific Wolbachia strain can help stop dengue from spreading in African mosquitoes, making it a promising option for controlling the disease on the continent.
View Article and Find Full Text PDF

Background: Malaria, a disease transmitted by Anopheles mosquitoes, is a major public health problem causing millions of deaths worldwide, mostly among children under the age of 5 years. Biotechnological interventions targeting parasite-vector interactions have shown that the microsporidian symbiont Microsporidia MB has the potential to disrupt and block Plasmodium transmission.

Methods: A prospective cross-sectional survey was conducted in Zinder City (Zinder), Niger, from August to September 2022, using the CDC light trap technique to collect adult mosquitoes belonging to the Anopheles gambiae complex.

View Article and Find Full Text PDF

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments.

View Article and Find Full Text PDF

Background: Local strains of the entomopathogenic fungus Metarhizium pingshaense in Burkina Faso have demonstrated remarkable virulence against malaria vectors, positioning them as promising candidates for inclusion in the future arsenal of malaria control strategies. However, the underlying mechanisms responsible for this virulence remain unknown. To comprehend the fungal infection process, it is crucial to investigate the attachment mechanisms of fungal spores to the mosquito cuticle and explore the relationship between virulence and attachment kinetics.

View Article and Find Full Text PDF

Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, TC1, which was isolated from mosquitoes incapable of sustaining the development of parasites. TC1 inhibits early stages of development and subsequent transmission by the mosquito through secretion of a small-molecule inhibitor.

View Article and Find Full Text PDF

Background: Vector control tools are urgently needed to control malaria transmission in Africa. A native strain of Chromobacterium sp. from Burkina Faso was recently isolated and preliminarily named Chromobacterium anophelis sp.

View Article and Find Full Text PDF

Dengue vector control strategies are mostly based on chemicals use against Aedes aegypti populations. The current study aimed at investigating the insecticidal effects of essential oils (EOs) obtained from five plant species, Cymbopogon citrates (D. C.

View Article and Find Full Text PDF

Chromobacterium sp. strain IRSSSOUMB001 with potent insecticidal activity was isolated from Anopheles gambiae s.l.

View Article and Find Full Text PDF

Background: There is a global consensus that new intervention tools are needed for the final steps toward malaria elimination/eradication. In a recent study in Burkina Faso, the Lehmann Funnel Entry Trap (LFET) has shown promising results in the reduction of mosquito densities, even in areas where insecticide resistance is as high as 80%. The LFET requires no chemicals and is self-operated.

View Article and Find Full Text PDF

Background: This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective.

View Article and Find Full Text PDF

Malaria control efforts require implementation of new technologies that manage insecticide resistance. provides an effective, mosquito-specific delivery system for potent insect-selective toxins. A semifield trial in a MosquitoSphere (a contained, near-natural environment) in Soumousso, a region of Burkina Faso where malaria is endemic, confirmed that the expression of an insect-specific toxin (Hybrid) increased fungal lethality and the likelihood that insecticide-resistant mosquitoes would be eliminated from a site.

View Article and Find Full Text PDF