Cellular protein degradation requires a complex molecular machine, the proteasome. To mitigate the fundamental challenge of assembling the 66-subunit proteasome, cells utilize dedicated chaperones to order subunit addition. However, recent evidence suggests that proteasome assembly is not simply a series of subunit additions, but each step may be scrutinized so that only correct assembly events advance to proteasomes.
View Article and Find Full Text PDFInhibition of endoribonuclease/kinase Ire1 has shown beneficial effects in many proteotoxicity-induced pathology models. The mechanism by which this occurs has not been elucidated completely. Using a proteotoxic yeast model of Huntington's disease, we show that the deletion of Ire1 led to lower protein aggregation at longer time points.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2022
In response to osmotic shock, the components of high-osmolarity glycerol (HOG) pathway regulate the level of intracellular glycerol in yeast and ensure cell survival. Glycerol is a compatible solute and a stabiliser of proteins. Its role in maintaining proteostasis is less explored.
View Article and Find Full Text PDFInt J Biol Macromol
November 2021
Peptidyl prolyl isomerases (PPIases) accelerate the rate limiting step of protein folding by catalyzing cis/trans isomerization of peptidyl prolyl bonds. The larger PPIases have been shown to be multi-domain proteins, with functions other than isomerization of the proline-containing peptide bond. Recently, a few smaller PPIases have also been described for their ability to stabilize folding intermediates.
View Article and Find Full Text PDFFEMS Yeast Res
September 2018
Heat shock response (HSR) is an important element of cellular homeostasis. In yeast, HSR comprises of the heat shock proteins (Hsps) and the osmolytes trehalose and glycerol. The respective roles of trehalose and Hsp104 in regulating protein aggregation remain ambiguous.
View Article and Find Full Text PDFChronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress.
View Article and Find Full Text PDF