Publications by authors named "Erin Marie D San Valentin"

Background: Oral mucositis is a painful complication commonly observed in head and neck cancer patients receiving cancer treatment. Emerging evidence suggests that changes in the oral microbiome can contribute to oral mucositis development, making microbial signatures potential targets for therapeutic interventions. This study aimed to: (1) characterize longitudinal microbial patterns of oral mucositis severity among head and neck cancer patients; (2) determine clinically relevant patient clusters based on oral mucositis severity trajectories; and (3) identify microbial signatures specific to these clusters.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), one of the most lethal cancers of the liver, has limited treatment options at advanced stages. Here, bismuth gadolinium (BiGd) nanoparticles (NPs) conjugated with anti-vascular endothelial growth factor antibody (aVEGF) are designed and tested for targeted image-guided radiation therapy against HCC. The BiGd NPs are synthesized using the sol-gel technique, functionalized with silica NPs, and labeled with fluorescent protamine-rhodamine B.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) have emerged as novel therapies for supporting arteriovenous fistula (AVF) maturation, and bioresorbable polymeric scaffolds have enabled sustained MSC delivery into maturing AVFs. However, the radiolucency of biopolymeric wraps prevents in vivo monitoring of their integrity and location, hindering long-term preclinical investigations.

Methods: We infused bismuth nanoparticles (BiNPs) into polycaprolactone (PCL) to fabricate an electrospun perivascular wrap capable of MSC delivery and conducive to longitudinal monitoring using conventional imaging.

View Article and Find Full Text PDF

In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation.

View Article and Find Full Text PDF

Oral mucositis (OM) is a common and clinically impactful side effect of cytotoxic cancer treatment, particularly in patients with head and neck squamous cell carcinoma (HNSCC) who undergo radiotherapy with or without concomitant chemotherapy. The etiology and pathogenic mechanisms of OM are complex, multifaceted and elicit both direct and indirect damage to the mucosa. In this narrative review, we describe studies that use various omics methodologies (genomics, transcriptomics, microbiomics and metabolomics) in attempts to elucidate the biological pathways associated with the development or severity of OM.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined how oral bacteria affect the severity of oral mucositis (OM) in head and neck cancer patients during treatment.
  • Researchers analyzed buccal swabs over treatment periods and grouped patients based on their OM severity patterns, identifying four distinct groups.
  • The results indicated specific bacterial populations correlated with OM severity, suggesting a potential for personalized treatment plans based on a patient’s oral microbiome profile.
View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-seeded polymeric perivascular wraps have been shown to enhance arteriovenous fistula (AVF) maturation. However, the wraps' radiolucency makes their placement and integrity difficult to monitor. Through electrospinning, we infused gold nanoparticles (AuNPs) into polycaprolactone (PCL) wraps to improve their radiopacity and tested whether infusion affects the previously reported beneficial effects of the wraps on the AVF's outflow vein.

View Article and Find Full Text PDF

Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated.

View Article and Find Full Text PDF

Background: To address high rates of arteriovenous fistula (AVF) failure, a mesenchymal stem cell (MSC)-seeded polymeric perivascular wrap has been developed to reduce neointimal hyperplasia (NIH) and enhance AVF maturation in a rat model. However, the wrap's radiolucency makes its placement and integrity difficult to monitor.

Purpose: In this study, we infused gold nanoparticles (AuNPs) into the polymeric perivascular wrap to improve its radiopacity and tested the effect of infusion on the previously reported beneficial effects of the polymeric wrap on the AVF outflow vein.

View Article and Find Full Text PDF

Background: Arteriovenous fistulas (AVFs) are a vital intervention for patients requiring hemodialysis, but they also contribute to overall mortality due to access malfunction. The most common cause of both AVF non-maturation and secondary failure is neointimal hyperplasia (NIH). Absorbable polycaprolactone (PCL) perivascular wraps can address these complications by incorporating drugs to attenuate NIH, such as rosuvastatin (ROSU), and metallic nanoparticles for visualization and device monitoring.

View Article and Find Full Text PDF

Nanomaterials research has significantly accelerated the development of the field of vascular and interventional radiology. The incorporation of nanoparticles with unique and functional properties into medical devices and delivery systems has paved the way for the creation of novel diagnostic and therapeutic procedures for various clinical disorders. In this review, we discuss the advancements in the field of interventional radiology and the role of nanotechnology in maximizing the benefits and mitigating the disadvantages of interventional radiology theranostic procedures.

View Article and Find Full Text PDF