Copper cations play fundamental roles in biological systems, such as protein folding and stabilization, or enzymatic reactions. Although copper is essential to the cell, it can become cytotoxic if present in too high concentration. Organisms have therefore developed specific regulation mechanisms towards copper.
View Article and Find Full Text PDFDouble PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied.
View Article and Find Full Text PDFInsect trehalases are glycoside hydrolases essential for trehalose metabolism and stress resistance. We here report the extraction and purification of Acyrthosiphon pisum soluble trehalase (ApTreh-1), its biochemical and structural characterization, as well as the determination of its kinetic properties. The protein has been purified by ammonium sulphate precipitation, first followed by an anion-exchange and then by an affinity chromatography.
View Article and Find Full Text PDFDouble PHD fingers 3 (DPF3) is a human epigenetic factor found in the multiprotein BRG1-associated factor (BAF) chromatin remodeling complex. It has two isoforms: DPF3b and DPF3a, but very little is known about the latter. Despite the lack of structural data, it has been established that DPF3a is involved in various protein-protein interactions and that it is subject to phosphorylation.
View Article and Find Full Text PDFHybrid free-standing biomimetic materials are developed by integrating the VDAC36 β-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching.
View Article and Find Full Text PDFAs it forms water-filled channel in the mitochondria outer membrane and diffuses essential metabolites such as NADH and ATP, the voltage-dependent anion channel (VDAC) protein family plays a central role in all eukaryotic cells. In comparison with their mammalian homologues, little is known about the structural and functional properties of plant VDACs. In the present contribution, one of the two VDACs isoforms of Solanum tuberosum, stVDAC36, has been successfully overexpressed and refolded by an in-house method, as demonstrated by the information on its secondary and tertiary structure gathered from circular dichroism and intrinsic fluorescence.
View Article and Find Full Text PDFOmp2a β-barrel outer membrane protein has been reconstituted into supported lipid bilayers (SLBs) to compare the nanomechanical properties (elastic modulus, adhesion forces, and deformation) and functionality of the resulting bioinspired system with those of Omp2a-based polymeric nanomembranes (NMs). Protein reconstitution into lipid bilayers has been performed using different strategies, the most successful one consisting of a detergent-mediated process into preformed liposomes. The elastic modulus obtained for the lipid bilayer and Omp2a are ∼19 and 10.
View Article and Find Full Text PDFThe thermomechanical response of Omp2a, a representative porin used for the fabrication of smart biomimetic nanomembranes, has been characterized using microcantilever technology and compared with standard proteins. For this purpose, thermally induced transitions involving the conversion of stable trimers to bigger aggregates, local reorganizations based on the strengthening or weakening of intermolecular interactions, and protein denaturation have been detected by the microcantilever resonance frequency and deflection as a function of the temperature. Measurements have been carried out on arrays of 8-microcantilevers functionalized with proteins (Omp2a, lysozyme and bovine serum albumin).
View Article and Find Full Text PDFThe European perch () is a carnivorous freshwater fish able to metabolise polyunsaturated fatty acids (PUFA) into highly unsaturated fatty acids (HUFA). This makes it a potential candidate for sustainable aquaculture development. In this study, special attention is given to the fatty-acid elongase (ELOVL) family, one of the two enzymatic systems implied in the HUFA biosynthesis.
View Article and Find Full Text PDFis a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials.
View Article and Find Full Text PDFOuter-membrane porins are currently being used to prepare bioinspired nanomembranes for selective ion transport by immobilizing them into polymeric matrices. However, the fabrication of these protein-integrated devices has been found to be strongly influenced by the instability of the β-barrel porin structure, which depends on surrounding environment. In this work, molecular dynamics simulations have been used to investigate the structural stability of a representative porin, OmpF, in three different environments: (i) aqueous solution at pH=7; (ii) a solution of neutral detergent in a concentration similar to the critical micelle concentration; and (iii) the protein embedded into a neutral detergent bilayer.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2018
In the present contribution, we report a combined spectroscopic and computational approach aiming to unravel at atomic resolution the effect of the anionic SDS detergent on the structure of two model peptides, the α-helix TrpCage and the β-stranded TrpZip. A detailed characterization of the specific amino acids involved is performed. Monomeric (single molecules) and micellar SDS species differently interact with the α-helix and β-stranded peptides, emphasizing the different mechanisms occurring below and above the critical aggregation concentration (CAC).
View Article and Find Full Text PDFBioinspired free-standing nanomembranes (FSNMs) for selective ion transport have been tailored by immobilizing the Omp2a β-barrel membrane protein inside nanoperforations created in flexible poly(lactic acid) (PLA) nanomembranes. Perforated PLA FSNMs have been prepared by spin-coating a 99 : 1 PLA : poly(vinyl alcohol) mixture, and through a phase segregation process nanofeatures with dimensions similar to the entire nanomembrane thickness (∼110 nm) were induced. These nanofeatures have subsequently been transformed into nanoperforations (diameter: ∼51 nm) by selective solvent etching.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
Biomedical platforms constructed by immobilizing membrane proteins in matrixes made of synthetic organic polymers is a challenge because the structure and function of these proteins are affected by environmental conditions. In this work, an operative composite that regulates the diffusion of alkali ions has been prepared by functionalizing a supporting matrix made of poly(N-methylpyrrole) (PNMPy) with a β-barrel membrane protein (Omp2a) that forms channels and pores. The protein has been unequivocally identified in the composite, and its structure has been shown to remain unaltered.
View Article and Find Full Text PDFSodium dodecyl sulfate (SDS) is a well-known anionic detergent widely used in both experimental and theoretical investigations. Many molecular dynamics (MD) simulation have been performed on the SDS molecule at coarse-grained (CG), united-atom (UA), and all-atom (AA) resolutions. However, these simulations are usually based on general parameters determined from large sets of molecules, and as a result, peculiar molecular specificities are often poorly represented.
View Article and Find Full Text PDFA series of lipophilic ester derivatives (2a-g) of (S)-1-(pent-4'-enoyl)-4-(hydroxymethyl)-azetidin-2-one has been synthesised in three steps from (S)-4-(benzyloxycarbonyl)-azetidin-2-one and evaluated as novel, reversible, β-lactamic inhibitors of endocannabinoid-degrading enzymes (human fatty acid amide hydrolase (hFAAH) and monoacylglycerol lipase (hMAGL)). The compounds showed IC50 values in the micromolar range and selectivity for hFAAH versus hMAGL. The unexpected 1000-fold decrease in activity of 2a comparatively to the known regioisomeric structure 1a (i.
View Article and Find Full Text PDFWe present a time-dependent density functional theory computation of the absorption spectra of one β-carboline system: the harmane molecule in its neutral and cationic forms. The spectra are computed in aqueous solution. The interaction of cationic harmane with DNA is also studied.
View Article and Find Full Text PDFBiotechnol Bioeng
February 2013
It has recently been reported that 2-methyl-2,4-pentanediol (MPD) can modulate the protein-binding properties of sodium dodecyl sulfate (SDS), turning it into a non-denaturing detergent. Indeed both alpha (the lysozyme) and beta (the carbonic anhydrase II) soluble enzymes, as well as a beta membrane protein (PagP) have been successfully refolded into their native form by using this amphiphatic alcohol. In order to support the universal character of our MPD-based technique, we have extended its transferability to the Omp2a trimeric membrane porin.
View Article and Find Full Text PDFEndo-inulinase is a member of glycosidase hydrolase family 32 (GH32) degrading fructans of the inulin type with an endo-cleavage mode and is an important class of industrial enzyme. In the present study, we report the first crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum at 1.5 Å.
View Article and Find Full Text PDFA new simulation strategy based on a stochastic process has been developed and tested to study the structural properties of the unfolded state of proteins at the atomistic level. The procedure combines a generation algorithm to produce representative uncorrelated atomistic microstructures and an original relaxation method to minimize repulsive non-bonded interactions. Using this methodology, a set of 14 unfolded proteins, including seven natively unfolded proteins as well as seven "classical" proteins experimentally described in denaturation conditions, has been investigated.
View Article and Find Full Text PDFThe sensing response of 15-crown-5-ether functionalized polythiophene to Li+, Na+, and K+ has been investigated at the atomistic level using molecular dynamics simulations. The stability associated with all the identified binding sites has been corroborated by quantum mechanical calculations. Although the cavity of the macrocycle is not the most visited binding site, such receptor is responsible of the selective sensing response of this polythiophene derivative.
View Article and Find Full Text PDFIn the present paper we report direct experimental evidence of the existence of hydrogen bonds between poly(3,4-(ethylenedioxy)thiophene) (PEDOT) and DNA complexes and bring deeper knowledge about how such interactions can take place in such species. To this end, we used both experimental and theoretical methodologies to examine the interactions between the building blocks composing these two macromolecules. The specific interaction natures between 3,4-(ethylenedioxy)thiophene (EDOT, E) and doubly protonated guanine (GH(2)(2+)) monomers have been investigated using UV-vis spectroscopy.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2011
In DNA, base pairs are involved in two reciprocal interactions: interbase hydrogen bonds and stacking. Furthermore, base pairs also undergo the effects of the external entities present in the biological environment, such as water molecules and cations. In this contribution, the double spontaneous mutation has been studied with hybrid theoretical tools in a DNA-embedded guanine-cytosine model accounting for the impact of the first hydration shell.
View Article and Find Full Text PDFJ Phys Chem B
April 2011
The determination of the structures and relative energies of microsolvated complexes remains an important challenge for theoretical chemistry because the number of possible aggregates rapidly increases when more solvent molecules are considered. Several approaches (chemical intuition, hierarchy of scheme, evolutionary trees, ..
View Article and Find Full Text PDF