Methods have been developed to isolate gametes of higher plants and to fertilize them in vitro. Zygotes, embryos, fertile plants and endosperm can now be obtained from in vitro fusion of pairs of sperm and egg cells and of pairs of sperm and central cells, respectively. This allows examination of the earliest developmental processes precisely timed after fertilization.
View Article and Find Full Text PDFMol Biol Evol
November 2007
The transcript level and in turn protein density of the K(+)-uptake channel ZMK1 in maize (Zea mays) coleoptiles is controlled by the phytohormone auxin. ZMK1 is involved in auxin-regulated coleoptile elongation as well as gravi- and phototropism. To provide unequivocal evidence for the role of ZMK1 in these elementary processes we screened for maize plants containing a Mutator-tagged Zmk1 gene.
View Article and Find Full Text PDFPlant imprinted genes show parent-of-origin expression in seed endosperm, but little is known about the nature of parental imprints in gametes before fertilization. We show here that single differentially methylated regions (DMRs) correlate with allele-specific expression of two maternally expressed genes in the seed and that one DMR is differentially methylated between gametes. Thus, plants seem to have developed similar strategies as mammals to epigenetically mark imprinted genes.
View Article and Find Full Text PDFPlant J
October 2005
The analysis of cell type-specific gene expression is an essential step in understanding certain biological processes during plant development, such as differentiation. Although methods for isolating specific cell types have been established, the application of cDNA subtraction to small populations of isolated cell types for direct identification of specific or differentially expressed transcripts has not yet been reported. As a first step in the identification of genes expressed differentially between maize egg cells and central cells, we have manually isolated these types of cell, and applied a suppression-subtractive hybridization (SSH) strategy.
View Article and Find Full Text PDFThe sulphated pentapeptide phytosulphokine (PSK) was identified as a substance that promotes cell division in low-density suspension cultures and has been implicated in various aspects of tissue differentiation in plants. The peptide is derived from PSK precursor proteins that are encoded by small gene families. The physiological roles of PSK are still not clearly defined and little is known about expression of members of the PSK precursor gene family in any plant species.
View Article and Find Full Text PDFIn higher plants, a zygote generally divides asymmetrically into a two-celled embryo. As in planta, maize zygotes produced by in vitro fertilization of an egg cell with a sperm cell also develop into an asymmetrical two-celled embryo that consists of a small plasma-rich apical cell and a large vacuolized basal cell. Subsequently, via zygotic embryogenesis, a proembryo and a transition phase embryo are formed from the two-celled embryo.
View Article and Find Full Text PDFIn most flowering plants, the female gametophyte develops in an ovule deeply embedded in the ovary. Through double fertilization, the egg cell fuses with the sperm cell, resulting in a zygote, which develops into the embryo. In the present study, we analyzed egg cell lysates by polyacrylamide gel electrophoresis and subsequent mass spectrometry-based proteomics technology, and identified major protein components expressed in the egg cell.
View Article and Find Full Text PDFA PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf.
View Article and Find Full Text PDFK+ channels control K+ homeostasis and the membrane potential in the sieve element/companion cell complexes. K+ channels from Arabidopsis phloem cells expressing green fluorescent protein (GFP) under the control of the AtSUC2 promoter were analysed using the patch-clamp technique and quantitative RT-PCR. Single green fluorescent protoplasts were selected after being isolated enzymatically from vascular strands of rosette leaves.
View Article and Find Full Text PDFDecondensation of the male genome after fertilization is a prerequisite for replication and transcription. Cytological analysis has revealed decondensation of the male chromatin to commence immediately after karyogamy and progress rapidly, pointing to an early start of transcription. To investigate early transcription from the paternal genome in maize zygotes, we generated transgenic plants containing green fluorescent protein (GFP) under control of the 35S promoter.
View Article and Find Full Text PDF