Publications by authors named "Enrica Cappellozza"

In utero fetal gene therapy (IUFGT) has the potential to correct severe monogenic disorders before irreversible damage occurs. Despite promising results in small and large animal models, its translation to clinical practice remains limited by technical challenges, safety concerns, and the lack of standardized protocols in relevant disease models species. We established and validated a minimally invasive, ultrasound-guided approach for systemic gene delivery in fetal pigs using a self-complementary AAV9 vector encoding GFP under a CAG promoter.

View Article and Find Full Text PDF

Skin is a major administration route for drugs, and all transdermal formulations must be tested for their capability to overcome the cutaneous barrier. Therefore, developing highly reliable skin models is crucial for preclinical studies. The current in vitro models are unable to replicate the living skin in all its complexity; thus, to date, excised human skin is considered the gold standard for in vitro permeation studies.

View Article and Find Full Text PDF

In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9% / and transethosomes based on phosphatidylcholine 0.

View Article and Find Full Text PDF

The investigation of the absorption of drug delivery systems, designed for the transport of therapeutic molecules inside the body, could be relatively simplified by the fluorophore association and tracking by means of bio-imaging techniques (i.e., optical in vivo imaging or confocal and multiphoton microscopy).

View Article and Find Full Text PDF
Article Synopsis
  • * This study introduces a modified bioreactor that allows for the use of explanted skin samples in a fluid dynamic environment, improving the experimental conditions to better mimic living skin.
  • * Results show that this new system enhances the structural and functional preservation of skin samples, making it a reliable method for testing new transdermal drugs while reducing the need for animal testing.
View Article and Find Full Text PDF

Purpose: Solid lipid nanoparticles are largely used in biomedical research and are characterized by high stability and biocompatibility and are also able to improve the stability of various loaded molecules. In vitro studies demonstrated that these nanoparticles are low cytotoxic, while in vivo studies proved their efficiency as nanocarriers for molecules characterized by a low bioavailability. However, to our knowledge, no data on the systemic biodistribution and organ accumulation of solid lipid nanoparticles in itself are presently available.

View Article and Find Full Text PDF

This study describes the preparation, characterization and in vitro release of monoolein aqueous dispersions (MAD) encapsulating quercetin (QT). As emulsifier, sodium cholate was employed at two different concentrations, namely 0.15% and 0.

View Article and Find Full Text PDF