We report the results of a zinc oxide (ZnO) low-power microsensor for sub-ppm detection of NO and HS in air at 200 °C. NO emission is predominantly produced by the combustion processes of fossil fuels, while coal-fired power plants are the main emitter of HS. Fossil fuels (oil, natural gas, and coal) combined contained 74% of USA energy production in 2023.
View Article and Find Full Text PDFOxidation reactions on semiconducting metal oxide (SMOs) surfaces have been extensively worked on in catalysis, fuel cells, and sensors. SMOs engage powerfully in energy-related applications such as batteries, supercapacitors, solid oxide fuel cells (SOFCs), and sensors. A deep understanding of SMO surface and oxygen interactions and defect engineering has become significant because all of the above-mentioned applications are based on the adsorption/absorption and consumption/transportation of adsorbed (physisorbed-chemisorbed) oxygen.
View Article and Find Full Text PDFThe intrinsic properties of semiconducting oxides having nanostructured morphology are highly appealing for gas sensing. In this study, the fabrication of nanostructured WO thin films with promising surface characteristics for hydrogen (H ) gas sensing applications is accomplished. This is enabled by developing a chemical vapor deposition (CVD) process employing a new and volatile tungsten precursor bis(diisopropylamido)-bis(tert-butylimido)-tungsten(VI), [W(N Bu) (N Pr ) ].
View Article and Find Full Text PDFMolybdenum disulfide (MoS2) is known for its versatile properties and hence is promising for a wide range of applications. The fabrication of high quality MoS2 either as homogeneous films or as two-dimensional layers on large areas is thus the objective of intense research. Since industry requirements on MoS2 thin films can hardly be matched by established exfoliation fabrication methods, there is an enhanced need for developing new chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes where a rational precursor selection is a crucial step.
View Article and Find Full Text PDFThe identification of bis-3-(N,N-dimethylamino)propyl zinc ([Zn(DMP) ], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed.
View Article and Find Full Text PDFThe most promising and utilized chemical sensing materials, WO and SnO were characterized by means advanced synchrotron based XPS, UPS, NAP-XPS techniques. The complementary electrical resistance and sensor testing experiments were also completed. A comparison and evaluation of some of the prominent and newly employed spectroscopic characterization techniques for chemical sensors were provided.
View Article and Find Full Text PDFA bottom-up approach starting with the development of new Hf precursors for plasma-enhanced atomic layer deposition (PEALD) processes for HfO followed by in situ thin-film surface characterization of HfO upon exposure to reactive gases via near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is reported. The stability of thin films under simulated operational conditions is assessed, and the successful implementation of HfO dielectric layers in metal-insulator-semiconductor (MIS) capacitors is demonstrated. Among the series of newly synthesized mono-guanidinato-tris-dialkyl-amido class of Hf precursors, one of them, namely, [Hf{η-(PrN)CNEtMe}(NEtMe)], was representatively utilized with oxygen plasma, resulting in a highly promising low-temperature PEALD process at 60 °C.
View Article and Find Full Text PDFA bottom-up process from precursor development for tin to plasma-enhanced atomic layer deposition (PEALD) for tin(IV) oxide and its successful implementation in a working thin-film transistor device is reported. PEALD of tin(IV) oxide thin films at low temperatures down to 60 °C employing tetrakis-(dimethylamino)propyl tin(IV) [Sn(DMP)] and oxygen plasma is demonstrated. The liquid precursor has been synthesized and thoroughly characterized with thermogravimetric analyses, revealing sufficient volatility and long-term thermal stability.
View Article and Find Full Text PDFCerium dioxide nanoparticles (CeO2 NPs) are an engineered nanomaterial (ENM) that possesses unique catalytic, oxidative, and reductive properties. Currently, CeO2 NPs are being used as a fuel catalyst but these properties are also utilized in the development of potential drug treatments for radiation and stroke protection. These uses of CeO2 NPs present a risk for human exposure; however, to date, no studies have investigated the effects of CeO2 NPs on the microcirculation following pulmonary exposure.
View Article and Find Full Text PDF