Publications by authors named "Emma Roback"

Hibernation exists in several unrelated mammalian lineages, allowing animals to survive extreme 0environmental conditions through profound physiological shifts, including reduced metabolic rate, heart rate, respiration, and body temperature. These physiological shifts allow hibernators to rely solely on fat reserves, simultaneously avoiding the adverse effects of prolonged immobility seen in nonhibernating species. Although research on individual species has highlighted key aspects of these adaptations, the genetic basis of hibernation across mammals remains poorly understood.

View Article and Find Full Text PDF

Loss-of-function alleles are a pertinent source of genetic variation with the potential to contribute to adaptation. Cave-adapted organisms exhibit striking loss of ancestral traits such as eyes and pigment, suggesting that loss-of-function alleles may play an outsized role in these systems. Here, we leverage 141 whole genome sequences to evaluate the evolutionary history and adaptive potential of single nucleotide premature termination codons (PTCs) in Mexican tetra.

View Article and Find Full Text PDF

The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment.

View Article and Find Full Text PDF

The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, , is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment.

View Article and Find Full Text PDF

Introgressive hybridization may play an integral role in local adaptation and speciation (Taylor and Larson, 2019). In the Mexican tetra , cave populations have repeatedly evolved traits including eye loss, sleep loss, and albinism. Of the 30 caves inhabited by , Chica cave is unique because it contains multiple pools inhabited by putative hybrids between surface and cave populations (Mitchell et al.

View Article and Find Full Text PDF
Article Synopsis
  • Circadian rhythms are essential for survival, yet cave-dwelling organisms like the Mexican tetra (Astyanax mexicanus) show significant changes due to their dark, stable environments.
  • Research on these cavefish reveals that evolution has led to disruptions in their internal biological clocks, with changes in how genes related to circadian rhythms are expressed.
  • Specific gene mutations, such as in aanat2 and rorca, impair sleep regulation and mirror the altered sleep patterns observed in cave populations, highlighting different evolutionary pathways that have affected their circadian behaviors.
View Article and Find Full Text PDF

Organisms rely upon external cues to avoid detrimental conditions during environmental change. Rapid water loss, or desiccation, is a universal threat for terrestrial plants and animals, especially under climate change, but the cues that facilitate plastic responses to avoid desiccation are unclear. We integrate acclimation experiments with gene expression analyses to identify the cues that regulate resistance to water loss at the physiological and regulatory level in a montane salamander (Plethodon metcalfi).

View Article and Find Full Text PDF