A stimulus can be familiar for multiple reasons. It might have been recently encountered, is similar to recent experience, or is similar to 'typical' experience. Understanding how the brain translates these sources of similarity into memory decisions is a fundamental, but challenging goal.
View Article and Find Full Text PDFPitch and timbre are two fundamental perceptual attributes of sound that help us distinguish voices in speech and appreciate music. Brightness, one of the primary dimensions of timbre, is governed by different acoustic parameters compared to pitch, but the two can be confused perceptually when varied simultaneously. Here we combine human behavior and fMRI to provide evidence of a potential neural substrate to explain this important but poorly understood perceptual confusion.
View Article and Find Full Text PDFA stimulus can be familiar for multiple reasons. It might have been recently encountered, or is similar to recent experience, or is similar to 'typical' experience. Understanding how the brain translates these sources of similarity into memory decisions is a fundamental, but challenging goal.
View Article and Find Full Text PDFConverging, cross-species evidence indicates that memory for time is supported by hippocampal area CA1 and entorhinal cortex. However, limited evidence characterizes how these regions preserve temporal memories over long timescales (e.g.
View Article and Find Full Text PDFDeep neural networks (DNNs) optimized for visual tasks learn representations that align layer depth with the hierarchy of visual areas in the primate brain. One interpretation of this finding is that hierarchical representations are necessary to accurately predict brain activity in the primate visual system. To test this interpretation, we optimized DNNs to directly predict brain activity measured with fMRI in human visual areas V1-V4.
View Article and Find Full Text PDFColor-biased regions have been found between face- and place-selective areas in the ventral visual pathway. To investigate the function of the color-biased regions in a pathway responsible for object recognition, we analyzed the natural scenes dataset (NSD), a large 7T fMRI dataset from 8 participants who each viewed up to 30,000 trials of images of colored natural scenes over more than 30 scanning sessions. In a whole-brain analysis, we correlated the average color saturation of the images with voxel responses, revealing color-biased regions that diverge into two streams, beginning in V4 and extending medially and laterally relative to the fusiform face area in both hemispheres.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects.
View Article and Find Full Text PDFFunctional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex responses to stimuli, yet such experiments are by nature constructed based on a priori hypotheses, limited to the set of images presented to the individual while they are in the scanner, are subject to noise in the observed brain responses, and may vary widely across individuals. In this work, we propose a novel computational strategy, which we call NeuroGen, to overcome these limitations and develop a powerful tool for human vision neuroscience discovery. NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to synthesize images predicted to achieve a target pattern of macro-scale brain activation.
View Article and Find Full Text PDFNat Neurosci
January 2022
Extensive sampling of neural activity during rich cognitive phenomena is critical for robust understanding of brain function. Here we present the Natural Scenes Dataset (NSD), in which high-resolution functional magnetic resonance imaging responses to tens of thousands of richly annotated natural scenes were measured while participants performed a continuous recognition task. To optimize data quality, we developed and applied novel estimation and denoising techniques.
View Article and Find Full Text PDFFrequency-to-place mapping, or tonotopy, is a fundamental organizing principle throughout the auditory system, from the earliest stages of auditory processing in the cochlea to subcortical and cortical regions. Although cortical maps are referred to as tonotopic, it is unclear whether they simply reflect a mapping of physical frequency inherited from the cochlea, a computation of pitch based on the fundamental frequency, or a mixture of these two features. We used high-resolution functional magnetic resonance imaging (fMRI) to measure BOLD responses as male and female human participants listened to pure tones that varied in frequency or complex tones that varied in either spectral content (brightness) or fundamental frequency (pitch).
View Article and Find Full Text PDFPitch and timbre are two primary features of auditory perception that are generally considered independent. However, an increase in pitch (produced by a change in fundamental frequency) can be confused with an increase in brightness (an attribute of timbre related to spectral centroid) and vice versa. Previous work indicates that pitch and timbre are processed in overlapping regions of the auditory cortex, but are separable to some extent via multivoxel pattern analysis.
View Article and Find Full Text PDFTimbre, or sound quality, is a crucial but poorly understood dimension of auditory perception that is important in describing speech, music, and environmental sounds. The present study investigates the cortical representation of different timbral dimensions. Encoding models have typically incorporated the physical characteristics of sounds as features when attempting to understand their neural representation with functional MRI.
View Article and Find Full Text PDFUnlabelled: Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes.
View Article and Find Full Text PDFVariations in the spectral shape of harmonic tone complexes are perceived as timbre changes and can lead to poorer fundamental frequency (F0) or pitch discrimination. Less is known about the effects of F0 variations on spectral shape discrimination. The aims of the study were to determine whether the interactions between pitch and timbre are symmetric, and to test whether musical training affects listeners' ability to ignore variations in irrelevant perceptual dimensions.
View Article and Find Full Text PDF