Collagen has been widely used for graft production and functionalized with various nanomaterials to impart chemical, physical, and bioactive properties that mimic natural bone characteristics, including the ability to generate of electrical charges. Barium titanate nanoparticles (BTNP) are particularly promising due to their piezoelectric properties. In this study, we evaluated the osteoinducing capacity of BTNP and developed an osteomimetic biocomposite composed of collagen and BTNP.
View Article and Find Full Text PDFCollagen, a key structural component of the extracellular matrix, assembles through a hierarchical process of fibrillogenesis. Despite extensive studies on mature collagen fibrils, intermediates such as protofibrils remain underexplored, particularly at the nanoscale. This study presents hyperspectral tip-enhanced Raman spectroscopy (TERS) imaging of collagen protofibrils, offering chemical and structural insights into early fibrillogenesis by acquiring nanoscale molecular profiles of collagen intermediates.
View Article and Find Full Text PDFThe deposition of amyloid plaques is considered one of the main microscopic features of Alzheimer's disease (AD). Since plaque formation can precede extensive neurodegeneration and it is the main clinical manifestation of AD, it constitutes a relevant target for new treatment and diagnostic approaches. Micro-Raman spectroscopy, a label-free technique, is an accurate method for amyloid plaque identification and characterization.
View Article and Find Full Text PDFGiven the long subclinical stage of Alzheimer's disease (AD), the study of biomarkers is relevant both for early diagnosis and the fundamental understanding of the pathophysiology of AD. Biomarkers provided by Amyloid-β (Aβ) plaques have led to an increasing interest in characterizing this hallmark of AD due to its promising potential. In this work, we characterize Aβ plaques by label-free multimodal imaging: we combine two-photon excitation autofluorescence (TPEA), second harmonic generation (SHG), spontaneous Raman scattering (SpRS), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS) to describe and compare high-resolution images of Aβ plaques in brain tissues of an AD mouse model.
View Article and Find Full Text PDFThe global prevalence of Alzheimer's disease (AD) points to endemic levels, especially considering the increase of average life expectancy worldwide. AD diagnosis based on early biomarkers and better knowledge of related pathophysiology are both crucial in the search for medical interventions that are able to modify AD progression. In this study we used unsupervised spectral unmixing statistical techniques to identify the vibrational spectral signature of amyloid β aggregation in neural tissues, as early biomarkers of AD in an animal model.
View Article and Find Full Text PDFBiomaterial matrices are being developed that mimic the key characteristics of the extracellular matrix, including presenting adhesion sites and displaying growth factors in the context of a viscoelastic hydrogel. This review focuses on two classes of materials: those that are derived from naturally occurring molecules and those that recapitulate key motifs of biomolecules within biologically active synthetic materials. We also discussed some of the most significant biological features of the ECM, and several engineering methods currently being implemented to design and tune synthetic scaffolds to mimic these features.
View Article and Find Full Text PDFStem cells are known for their capacity to self-renew and differentiate into at least one specialized cell type. Mesenchymal stem cells (MSCs) were isolated initially from bone marrow but are now known to exist in all vascularized organ or tissue in adults. MSCs are particularly relevant for therapy due to their simplicity of isolation and cultivation.
View Article and Find Full Text PDFUnlabelled: Subcellular Ca(2+) signals control a variety of responses in the liver. For example, mitochondrial Ca(2+) (Ca(mit)(2+)) regulates apoptosis, whereas Ca(2+) in the nucleus regulates cell proliferation. Because apoptosis and cell growth can be related, we investigated whether Ca(mit)(2+) also affects liver regeneration.
View Article and Find Full Text PDF