Publications by authors named "Else A Tolner"

Pathogenic variants in the neuronal Na/K ATPase transmembrane ion transporter (ATP1A3) cause a spectrum of neurological disorders including alternating hemiplegia of childhood (AHC). The most common de novo pathogenic variants in AHC are p.D801N (∼40 % of patients) and p.

View Article and Find Full Text PDF

Objective: Quantitative markers of cortical excitability may help identify responders to anti-seizure medications (ASMs). We studied the relationship between ASM load and two electroencephalography (EEG) markers of cortical excitability in people with refractory epilepsy.

Methods: We included individuals with refractory focal epilepsy undergoing presurgical evaluation, involving ASM tapering and sleep deprivation.

View Article and Find Full Text PDF

Background: The therapeutic use of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) to treat migraine has been understudied. Using three mouse models, we examined the impact of CBD and THC on migraine-relevant behaviors triggered by: 1) calcitonin gene-related peptide (CGRP), 2) sodium nitroprusside (SNP), and 3) cortical spreading depolarization (CSD).

Methods: Both male and female CD1 mice were treated with CBD (100 mg/kg) or THC (1 mg/kg) alone or in combinations of CBD (1, 30 or 100 mg/kg) and THC (1 mg/kg) prior to injection of CGRP or SNP.

View Article and Find Full Text PDF

The mechanisms of initiation of spreading depolarization (SD) are understudied due to a paucity of disease models with spontaneously occurring events. We here present a novel mouse model of familial hemiplegic migraine type 2 (FHM2), expressing the missense T345A-mutated α2 subunit of the Na/K adenosine triphosphatase pump (Atp1a2). Homozygous Atp1a2 mice showed regular spontaneous SDs that exhibit a diurnal rhythm and typically originate from the hippocampus.

View Article and Find Full Text PDF

Migraine is a highly prevalent brain condition with paroxysmal changes in brain excitability believed to contribute to the initiation of an attack. The attacks and their unpredictability have a major impact on the lives of patients. Clinical management is hampered by a lack of reliable predictors for upcoming attacks, which may help in understanding pathophysiological mechanisms to identify new treatment targets that may be positioned between the acute and preventive possibilities that are currently available.

View Article and Find Full Text PDF
Article Synopsis
  • * Observations in a mouse model showed that these apneic events were preceded by significant brainstem depolarization, suggesting a neurological cause.
  • * Sodium channel blockers were effective in reducing severe apneic events in both the mouse model and the infant patient, indicating potential therapeutic options for similar cases.
View Article and Find Full Text PDF

Introduction: Migraine is associated with enhanced visual sensitivity during and outside attacks. Processing of visual information is a highly non-linear process involving complex interactions across (sub)cortical networks. In this exploratory study, we combined electroencephalography with bi-sinusoidal light stimulation to assess non-linear features of visual processing in participants with migraine.

View Article and Find Full Text PDF

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant Ca2.1 Ca channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients.

View Article and Find Full Text PDF

Background: Cortical spreading depolarization (CSD), the neurophysiological correlate of the migraine aura, can activate trigeminal pain pathways, but the neurobiological mechanisms and behavioural consequences remain unclear. Here we investigated effects of optogenetically-induced CSDs on headache-related behaviour and neuroinflammatory responses in transgenic mice carrying a familial hemiplegic migraine type 1 (FHM1) mutation.

Methods: CSD events (3 in total) were evoked in a minimally invasive manner by optogenetic stimulation through the intact skull in freely behaving wildtype (WT) and FHM1 mutant mice.

View Article and Find Full Text PDF

Migraine is associated with altered sensory processing, that may be evident as changes in cortical responsivity due to altered excitability, especially in migraine with aura. Cortical excitability can be directly assessed by combining transcranial magnetic stimulation with electroencephalography (TMS-EEG). We measured TMS evoked potential (TEP) amplitude and response consistency as these measures have been linked to cortical excitability but were not yet reported in migraine.

View Article and Find Full Text PDF

Functional assessment of in vitro neuronal networks-of relevance for disease modelling and drug testing-can be performed using multi-electrode array (MEA) technology. However, the handling and processing of the large amount of data typically generated in MEA experiments remains a huge hurdle for researchers. Various software packages have been developed to tackle this issue, but to date, most are either not accessible through the links provided by the authors or only tackle parts of the analysis.

View Article and Find Full Text PDF

Metabolite levels in peripheral body fluids can correlate with attack features in migraine patients, which underscores the potential of plasma metabolites as possible disease biomarkers. Migraine headache can be preceded by an aura that is caused by cortical spreading depolarization (CSD), a transient wave of neuroglial depolarization. We previously identified plasma amino acid changes after CSD in familial hemiplegic migraine type 1 (FHM1) mutant mice that exhibit increased neuronal excitability and various migraine-related features.

View Article and Find Full Text PDF

Introduction: The lack of reliable biomarkers constrain epilepsy management. We assessed the potential of repeated transcranial magnetic stimulation with electromyography (TMS-EMG) to track dynamical changes in cortical excitability on a within-subject basis.

Methods: We recruited people with refractory focal epilepsy who underwent video-EEG monitoring and drug tapering as part of the presurgical evaluation.

View Article and Find Full Text PDF

The mouse is widely used as an experimental model to study visual processing. To probe how the visual system detects changes in the environment, functional paradigms in freely behaving mice are strongly needed. We developed and validated the first EEG-based method to investigate visual deviance detection in freely behaving mice.

View Article and Find Full Text PDF

Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated.

View Article and Find Full Text PDF

Neuroinflammatory changes involving neuronal HMGB1 release and astrocytic NF-κB nuclear translocation occur following cortical spreading depolarization (CSD) in wildtype (WT) mice but it is unknown to what extent this occurs in the migraine brain. We therefore investigated in familial hemiplegic migraine type 1 (FHM1) knock-in mice, which express an intrinsic hyperexcitability phenotype, the extent of neuroinflammation without and after CSD. CSD was evoked in one hemisphere by pinprick (single CSD) or topical KCl application (multiple CSDs).

View Article and Find Full Text PDF
Article Synopsis
  • Epileptic absence seizures can be controlled by stimulating cerebellar nuclei (CN) neurons that communicate with the thalamus, but the mechanism of how this affects thalamo-cortical oscillations is unclear.
  • The study tested whether single-pulse optogenetic stimulation of CN neurons could disrupt synchronized thalamo-cortical activity during seizures in a mouse model of absence epilepsy.
  • Results showed that this stimulation effectively desynchronized thalamic firing during seizures, which may clarify how cerebellar stimulation can terminate seizure activity and influence thalamic pathways.
View Article and Find Full Text PDF

Dravet syndrome (DS) is an epileptic encephalopathy that still lacks biomarkers for epileptogenesis and its treatment. Dysfunction of Na1.1 sodium channels, which are chiefly expressed in inhibitory interneurons, explains the epileptic phenotype.

View Article and Find Full Text PDF

Migraine patients often report (inter)ictal hypersensitivity to light, but the underlying mechanisms remain an enigma. Both hypo- and hyperresponsivity of the visual network have been reported, which may reflect either intra-individual dynamics of the network or large inter-individual variation in the measurement of human visual evoked potential data. Therefore, we studied visual system responsivity in freely behaving mice using combined epidural electroencephalography and intracortical multi-unit activity to reduce variation in recordings and gain insight into visual cortex dynamics.

View Article and Find Full Text PDF

Early onset seizures are a hallmark of Dravet syndrome. Previous studies in rodent models have shown that the epileptic phenotype is caused by loss-of-function of voltage-gated Na 1.1 sodium channels, which are chiefly expressed in γ-aminobutyric acid (GABA)ergic neurons.

View Article and Find Full Text PDF

Background: Migraine is associated with altered sensory processing and cortical responsivity that may contribute to susceptibility to attacks by changing brain network excitability dynamics. To gain better insight into cortical responsivity changes in migraine we subjected patients to a short series of light inputs over a broad frequency range ("chirp" stimulation), designed to uncover dynamic features of visual cortex responsivity.

Methods: EEG responses to visual chirp stimulation (10-40 Hz) were measured in controls (n = 24) and patients with migraine with aura (n = 19) or migraine without aura (n = 20).

View Article and Find Full Text PDF
Article Synopsis
  • - The research introduces a new transgenic mouse model for familial hemiplegic migraine type 3 (FHM3) that allows for the observation of spontaneous cortical spreading depolarization (CSD), a key feature of migraine aura.
  • - These mutant mice express a specific mutation in sodium channels, which facilitates the study of CSD events in a controlled laboratory setting.
  • - The findings reveal that CSDs in the mice follow a pattern similar to what is seen in human migraine patients, suggesting this model could help in developing treatments for migraines and related conditions.
View Article and Find Full Text PDF

Objective: To determine whether transgenic mouse models of migraine exhibit upper gastrointestinal dysmotility comparable to those observed in migraine patients.

Background: There is considerable evidence supporting the comorbidity of gastrointestinal dysmotility and migraine. Gastrointestinal motility, however, has never been investigated in transgenic mouse models of migraine.

View Article and Find Full Text PDF

Seizure-related apnea is common and can be lethal. Its mechanisms however remain unclear and preventive strategies are lacking. We postulate that brainstem spreading depolarization (SD), previously associated with lethal seizures in animal models, initiates apnea upon invasion of brainstem respiratory centers.

View Article and Find Full Text PDF
Article Synopsis
  • * Findings indicate that changes in the cortex can influence migraine susceptibility by affecting how different brain regions communicate during pain episodes.
  • * The conclusion emphasizes the need for more studies to explore the mechanisms behind these changes and their potential impact on treatment and management of migraines.
View Article and Find Full Text PDF