Many organisms cope with highly variable environmental temperatures by differentiating body temperature from that of the environment through thermoregulation. Heterotherms can both endogenously maintain body temperature with metabolic heat and behaviourally thermoregulate by selecting suitable microclimates. Expending excess energy to maintain stable high body temperatures may be prioritized during certain times of the year, or for certain activities (e.
View Article and Find Full Text PDFBumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure.
View Article and Find Full Text PDFCold tolerance of ectotherms can vary strikingly among species and populations. Variation in cold tolerance can reflect differences in genomes and transcriptomes that confer cellular-level protection from cold; additionally, shifts in protein function and abundance can be altered by other cellular constituents as cold-exposed insects often have shifts in their metabolomes. Even without a cold challenge, insects from different populations may vary in cellular composition that could alter cold tolerance, but investigations of constitutive differences in metabolomes across wild populations remain rare.
View Article and Find Full Text PDFBombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B.
View Article and Find Full Text PDFFor insects, the timing of many life history events (phenology) depends on temperature cues. Body size is a critical mediator of insect responses to temperature, so may also influence phenology. The determinants of spring emergence of bumble bee queens are not well understood, but body size is likely important for several reasons.
View Article and Find Full Text PDFBumble bees thrive in cold climates including high latitude and high altitude regions around the world, yet cold tolerance strategies are largely unknown for most species. To determine bumble bee cold tolerance strategy, we exposed bumble bees to a range of low temperatures and measured survival 72 h post-exposure. All bees that froze died within 72 h while only one bee died without freezing, suggesting that bumble bees are generally freeze-avoiding insects and may be slightly chill susceptible.
View Article and Find Full Text PDF