An electronic nose (e-nose) utilizes a multisensor array, which relies on the vector contrast of combinatorial responses, to effectively discriminate between volatile organic compounds (VOCs). In recent years, hierarchical structures made of nonbiological materials have been used to achieve the required sensor diversity. With the advent of self-assembling peptides, the ability to tune nanostructuration, surprisingly, has not been exploited for sensor array diversification.
View Article and Find Full Text PDFBackground: In the context of translational research, researchers have increasingly been using biological samples and data in fundamental research phases. To explore informed consent practices, we conducted a retrospective study on informed consent documents that were used for CARPEM's translational research programs. This review focused on detailing their form, their informational content, and the adequacy of these documents with the international ethical principles and participants' rights.
View Article and Find Full Text PDFHere, we describe the identification and synthesis of novel indole sulfonamide derivatives that activate the three peroxisome proliferator activated receptor (PPAR) isoforms. Starting with a PPARα activator, compound 4, identified during a high throughput screening (HTS) of our proprietary screening library, a systematic optimization led to the discovery of lanifibranor (IVA337) 5, a moderately potent and well balanced pan PPAR agonist with an excellent safety profile. In vitro and in vivo, compound 5 demonstrated strong activity in models that are relevant to nonalcoholic steatohepatitis (NASH) pathophysiology suggesting therapeutic potential for NASH patients.
View Article and Find Full Text PDF