Publications by authors named "Elise Cachat"

Immune cells play a pivotal role in the establishment, growth, and progression of tumors at primary and metastatic sites. Macrophages, in particular, play a critical role in suppressing immune responses and promoting an anti-inflammatory environment through both direct and indirect cell-cell interactions. However, our understanding of the mechanisms underlying such interactions is limited due to a lack of reliable tools for studying transient interactions between cancer cells and macrophages within the tumor microenvironment.

View Article and Find Full Text PDF

Chromobodies are nanobodies genetically fused to fluorescent proteins, which were developed to visualize endogenous intracellular antigens. These versatile bioimaging nanotools can also be used to detect cell surface epitopes, and we describe here how we use them as an alternative to conjugated antibodies. This way, we routinely test the binding efficiency of nanobodies for their cognate cell surface antigens, before integrating them as sensing domains into complex synthetic receptor architectures.

View Article and Find Full Text PDF
Article Synopsis
  • CHO cells are essential in the biopharmaceutical industry, prompting extensive use of genetic engineering techniques like CRISPR-Cas to enhance their performance in protein production.
  • This review highlights recent advances using various CRISPR-Cas systems to improve recombinant protein output in CHO cells while discussing the benefits, limitations, and challenges of these methods.
  • Emphasis is placed on how gene regulation affects glycan composition, influencing the properties of therapeutic proteins, and the future potential of CRISPR technology for developing more efficient CHO cell lines, necessitating further research to unlock its full capabilities.
View Article and Find Full Text PDF

Multicellular systems possess an intrinsic capacity to autonomously generate nonrandom state distributions or morphologies in a process termed self-organization. Facets of self-organization, such as pattern formation, pattern elaboration, and symmetry breaking, are frequently observed in developing embryos. Artificial stem cell-derived structures including embryoid bodies (EBs), gastruloids, and organoids also demonstrate self-organization, but with a limited capacity compared to their developmental counterparts.

View Article and Find Full Text PDF

"Crossing Kingdoms" is an artist-led experiment in the biological fusion of mammalian and yeast cells and the cultural discussions of these phenomena. We present this collaboration as an experiment in responsible research and innovation (RRI), an institutionalized format for ensuring that researchers reflect on the wider social dimensions of their work. Our methods challenged us as researchers to reflect on interdisciplinary collaboration and the possibility of innovating in biology for artistic purposes, challenged audiences to reflect on biological boundaries, and challenged both groups to reflect on what it means to be responsible in science.

View Article and Find Full Text PDF

Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind.

View Article and Find Full Text PDF

Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines).

View Article and Find Full Text PDF

Synthetic biology provides an opportunity for the construction and exploration of alternative solutions to biological problems - solutions different from those chosen by natural life. To this end, synthetic biologists have built new sensory systems, cellular memories, and alternative genetic codes. There is a growing interest in applying synthetic approaches to multicellular systems, especially in relation to multicellular self-organization.

View Article and Find Full Text PDF

Background: In mammalian development, the formation of most tissues is achieved by a relatively small repertoire of basic morphogenetic events (e.g. cell adhesion, locomotion, apoptosis, etc.

View Article and Find Full Text PDF

Bacillus thuringiensis serovar Monterrey strain BGSC 4AJ1 produced a microscopically visible capsule that reacted with a fluorescent antibody specific for the poly-gamma-d-glutamic acid (PGA) capsule of Bacillus anthracis. PGA capsule biosynthesis genes with 75%, 81%, 72%, 65% and 63% similarity, respectively, to those of the B. anthracis capBCADE cluster were present on a plasmid (pAJ1-1).

View Article and Find Full Text PDF

Eight strains of Lactobacillus with identical partial 16S rRNA gene sequences and similar randomly amplified polymorphic DNA patterns were isolated from fermentation samples from Japanese and Scottish malt whisky distilleries. Phylogenetic analysis of almost complete 16S rRNA gene sequences from three representative strains (two from Japan, one from Scotland) placed them in the genus Lactobacillus as members of the Lactobacillus acidophilus group. Lactobacillus helveticus and Lactobacillus gallinarum were the most closely related species, with 16S rRNA gene similarities of 99.

View Article and Find Full Text PDF