Interfacial charge-transfer (ICT) hybrids including transition metal dichalcogenides (TMDs) and phthalocyanines were synthesized and thoroughly characterized. The amount of noncovalently immobilized phthalocyanines per liquid-phase exfoliated (LPE) TMD flake increased exponentially with decreasing flake thickness. Steady-state spectroscopy revealed strong ground-state electronic coupling, evidenced by the emergence of distinct ICT bands.
View Article and Find Full Text PDFWe outline a multistate molecular mechanics model for describing hemithioindigo-based photoswitches in the ground and excited (T) states, respectively. While retaining near quantum mechanical accuracy of the related Born-Oppenheimer potential energy profiles, the computational efficiency of our approach offers ns-scale molecular dynamics simulation runs featuring extended statistics of complex systems. Contrasting a series of different environments, we elucidate the explicit solvent effect on - switching from the triplet-surface in terms of both energetics and kinetic aspects.
View Article and Find Full Text PDFSmall Methods
May 2025
Anthropogenic persistent organic pollutants pose a pressing threat to the environment and human health. They can be found in water bodies all around the world at low but hazardous concentrations. Typical representatives of this contaminant class are polychlorinated biphenyls (PCBs).
View Article and Find Full Text PDFDiarylmethanes play, in part, a pivotal role in the design of highly potent, chiral, nonracemic drugs whose bioactivity is typically affected by the substitution pattern of their arene units. In this context, certain arenes such as -substituted benzenes or unsubstituted heteroarenes cause particular synthetic challenges, since such isosteric residues at the central methane carbon atom are typically indistinguishable for a chiral catalyst. Hence, the stereoselective incorporation of isosteric (hetero)arenes into chiral methane scaffolds requires the use of stoichiometrically differentiated building blocks, which is typically realized through preceding redox-modifying operations such as metalation or halogenation and thus associated with disadvantageous step- and redox-economic traits.
View Article and Find Full Text PDFThe unimolecular heterolysis of covalent σ-bonds is integral to many chemical transformations, including S1-, E1- and 1,2-migration reactions. To a first approximation, the unequal redistribution of electron density during bond heterolysis is governed by the difference in polarity of the two departing bonding partners. This means that if a σ-bond consists of two identical groups (that is, symmetric σ-bonds), its unimolecular fission from the S, S, or T states only occurs homolytically after thermal or photochemical activation.
View Article and Find Full Text PDF