Exposure of healthcare workers to anticancer drugs requires the combined action of environmental and biological monitoring to assess the effective level of exposure to these chemicals, to improve awareness and to avoid adverse health effects on this category of workers. Cancer chemotherapeutic drugs show different mechanisms of action due to diverse chemical structures; consequently, they differ in hydrophobicity, pharmacokinetics and pharmacodynamics. Therefore, the appearance, accumulation and elimination of each of these molecules in body fluids and tissues might be extremely variable; this prompts the need for a rapid and versatile analytical protocol for the biological monitoring of possible exposure of workers involved in the manipulation, administration and disposal of cancer chemotherapeutic drugs.
View Article and Find Full Text PDFBackground: Familial combined hyperlipidemia (FCH) is a polygenic and multifactorial disease characterized by a variable phenotype showing increased levels of triglycerides and/or cholesterol. The aim of this study was to identify single nucleotides (SNPs) in lipid-related genes associated with FCH.
Methods And Results: Twenty SNPs in lipid-related genes were studied in 142 control subjects and 165 FCH patients after excluding patients with mutations in the LDLR gene and patients with the E2/E2 genotype of APOE.
Cancer Chemother Pharmacol
September 2009
Purpose: Cardenoliddes are steroid glycosides which are known to exert cardiotonic effects by inhibiting the Na(+)/K(+)-ATPase. Several of these compounds have been shown also to possess anti-tumor potential. The aim of the present work was the characterization of the tumor cell growth inhibition activity of four cardenolides, isolated from Periploca graeca L.
View Article and Find Full Text PDFTwo new furostanol saponins, (25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-2alpha,3beta,22alpha,26-tetraol 3-O-{beta-D-galactopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside} (1) and (25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-3beta,22alpha,26-triol 3-O-{beta-D-galactopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside} (2), and their O-methyl derivatives (3 and 4), and a new megastigmane glucoside, (6S,7E,9xi)-6,9,10-trihydroxy-4,7-megastigmadien-3-one 10-O-beta-D-glucopyranoside (6), along with one known spirostanol saponin, gitonin (5), and four known megastigmane glucosides were isolated from the aerial parts of Tribulus parvispinus. Their structures were established by detailed spectroscopic analysis. The cytotoxic activities of 1-6 against U937, MCF7, and HepG2 cells were evaluated.
View Article and Find Full Text PDF