Publications by authors named "Eleanor N Fish"

This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to evaluate the potential of pegylated IFNβ-1a in reducing COVID-19 transmission among household contacts of infected individuals in Santiago, Chile, from December 2020 to June 2021.
  • The trial involved 1,172 participants, with households randomly assigned to receive the IFN treatment or standard care, while safety and effectiveness on viral shedding and transmission were monitored.
  • Results indicated no significant effect of IFNβ-1a on the duration of viral shedding or transmission among household contacts, showing the absolute risk reductions were negligible for both outcomes.
View Article and Find Full Text PDF

Unlabelled: Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN.

View Article and Find Full Text PDF

The current framework for testing and regulating vaccines was established before the realization that vaccines, in addition to their effect against the vaccine-specific disease, may also have "non-specific effects" affecting the risk of unrelated diseases. Accumulating evidence from epidemiological studies shows that vaccines in some situations can affect all-cause mortality and morbidity in ways that are not explained by the prevention of the vaccine-targeted disease. Live attenuated vaccines have sometimes been associated with decreases in mortality and morbidity that are greater than anticipated.

View Article and Find Full Text PDF

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to hijack angiotensin converting enzyme 2 (ACE2) for entry into mammalian cells. A short isoform of ACE2, termed deltaACE2 (dACE2), has recently been identified. In contrast to ACE2, the short dACE2 isoform lacks the ability to bind the spike protein of SARS-CoV-2.

View Article and Find Full Text PDF

Ebola virus (EBV) disease (EVD) is a highly virulent systemic disease characterized by an aggressive systemic inflammatory response and impaired vascular and coagulation systems, often leading to uncontrolled hemorrhaging and death. In this study, the proteomes of 38 sequential plasma samples from 12 confirmed EVD patients were analyzed. Of these 12 cases, 9 patients received treatment with interferon beta 1a (IFN-β-1a), 8 survived EVD, and 4 died; 2 of these 4 fatalities had received IFN-β-1a.

View Article and Find Full Text PDF

Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK.

View Article and Find Full Text PDF

Background: SARS-CoV-2 infection rapidly spreads in populations due to the high rates of community transmission. Interrupting the shedding of SARS-CoV-2 may reduce the incidence of Coronavirus Disease 19 (COVID-19). Herein we provide a protocol for a cluster randomized trial that will examine the effectiveness of treatment with interferon (IFN) ß-1a compared to standard of care in limiting the transmission of SARS-CoV-2.

View Article and Find Full Text PDF

We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a lung disease that may progress to systemic organ involvement and in some cases, death. The identification of the earliest predictors of progressive lung disease would allow for therapeutic intervention in those cases. In an earlier clinical study, individuals with moderate COVID-19 were treated with either arbidol (ARB) or inhaled interferon (IFN)-α2b +/-ARB.

View Article and Find Full Text PDF

For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells.

View Article and Find Full Text PDF

The global pandemic of COVID-19 cases caused by infection with SARS-CoV-2 is ongoing, with no approved antiviral intervention. We describe here the effects of treatment with interferon (IFN)-α2b in a cohort of confirmed COVID-19 cases in Wuhan, China. In this uncontrolled, exploratory study, 77 adults hospitalized with confirmed COVID-19 were treated with either nebulized IFN-α2b (5 mU b.

View Article and Find Full Text PDF

Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread.

View Article and Find Full Text PDF

Aberrant activation of mTOR signaling in acute myeloid leukemia (AML) results in a survival advantage that promotes the malignant phenotype. To improve our understanding of factors that contribute to mammalian target of rapamycin (mTOR) signaling activation and identify novel therapeutic targets, we searched for unique interactors of mTOR complexes through proteomics analyses. We identify cyclin dependent kinase 9 (CDK9) as a novel binding partner of the mTOR complex scaffold protein, mLST8.

View Article and Find Full Text PDF
Article Synopsis
  • * The study showed that SIRT2, a protein involved in regulating acetylation, plays a crucial role in the signaling process related to IFNs by modifying another protein called CDK9, impacting important phosphorylation events.
  • * These insights highlight a new pathway in IFN signaling that could be targeted for developing therapies aimed at immune-related diseases and cancer treatment.
View Article and Find Full Text PDF

It is well established that activation of the transcription factor signal transducer and activator of transcription 1 (STAT1) is required for the interferon-γ (IFN-γ)-mediated antiviral response. Here, we found that IFN-γ receptor stimulation also activated Unc-51-like kinase 1 (ULK1), an initiator of Beclin-1-mediated autophagy. Furthermore, the interaction between ULK1 and the mitogen-activated protein kinase kinase kinase MLK3 (mixed lineage kinase 3) was necessary for MLK3 phosphorylation and downstream activation of the kinase ERK5.

View Article and Find Full Text PDF

Accumulating evidence indicates that chemokine-chemokine receptor interactions invoke biological responses beyond their originally described function of orchestrating leukocyte trafficking. In this review we will extend the findings that chemokines participate actively in the neoplastic process, and consider the contribution of CCL5 activation of CCR5 on breast cancer cells to upregulation of anabolic metabolic events that would support the energy demands of cell replication and proliferation.

View Article and Find Full Text PDF

Although members of the Slfn family have been implicated in the regulation of type I interferon (IFN) responses, the mechanisms by which they mediate their effects remain unknown. In the present study, we provide evidence that targeted disruption of the gene leads to increased transcription of IFN-stimulated genes (ISGs) and enhanced type I IFN-mediated antiviral responses. We demonstrate that Slfn2 interacts with protein phosphatase 6 regulatory subunit 1 (PPP6R1), leading to reduced type I IFN-induced activation of nuclear factor kappa B (NF-κB) signaling, resulting in reduced expression of ISGs.

View Article and Find Full Text PDF

Background: In earlier studies we have shown that CCL5 activation of CCR5 induces the proliferation and survival of breast cancer cells in a mechanistic target of rapamycin (mTOR)-dependent manner and that this is in part due to CCR5-mediated increases in glycolytic metabolism.

Methods: Using the MDA-MB-231 triple negative human breast cancer cell line and mouse mammary tumor virus - polyomavirus middle T-antigen (MMTV-PyMT) mouse primary breast cancer cells, we conducted in vivo tumor transplant experiments to examine the effects of CCL5-CCR5 interactions in the context of regulating tumor metabolism. Additionally, we employed Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry imaging (MALDI-FTICR-MSI) to evaluate tumor utilization of cellular metabolites.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disease affecting multiple joints. It remains unclear which factors in the circulation are associated with the systemic spread of the disease. Fibrocytes are pluripotent mesenchymal stem cells present in the circulation of RA patients.

View Article and Find Full Text PDF

The transitional stage of B cell development is a formative stage in the spleen where autoreactive specificities are censored as B cells gain immune competence, but the intrinsic and extrinsic factors regulating survival of transitional stage 1 (T1) B cells are unknown. We report that B cell expression of IFN-β is required for optimal survival and TLR7 responses of transitional B cells in the spleen and was overexpressed in T1 B cells from BXD2 lupus-prone mice. Single-cell gene expression analysis of B6 versus B6 T1 B cells revealed heterogeneous expression of in wild-type B cells and distinct gene expression patterns associated with endogenous IFN-β.

View Article and Find Full Text PDF