Resolving timing of the invasion of nonindigenous species is difficult in estuarine settings, due to their pervasive history of anthropogenic disturbance. Many non-native marine taxa are not documented until after they have become invasive, leaving questions about invasion timing (first introduction and lag period), geographic origin, vectors and pathways, and cause(s) of success. Foraminifera, unicellular, calcareous-shelled eukaryotes, offer a unique way of analyzing past ecosystem structure because their fossilized shells provide a window into the past, and small size and abundance enable us to document distribution over time in core samples.
View Article and Find Full Text PDFWe acquired and analyzed metagenome and 16S/18S rRNA gene amplicon data of green-colored microbial mats from two hot springs within the Onikobe geothermal region (Miyagi Prefecture, Japan). The two collection sites-Tamago and Warabi-were in proximity and had the same temperature (40 °C), but the Tamago site was connected to a nearby stream, whereas the Warabi site was isolated. Both the amplicon and metagenome data suggest the bacterial, especially cyanobacterial, dominance of the mats; other abundant groups include Chloroflexota, Pseudomonadota, Bacteroidota/Chlorobiota, and Deinococcota.
View Article and Find Full Text PDFKnowledge of eukaryotic life cycles and associated genome dynamics stems largely from research on animals, plants, and a small number of "model" (i.e., easily cultivable) lineages.
View Article and Find Full Text PDF