There is robust evidence that senescence can be propagated in vitro through mechanisms including the senescence-associated secretory phenotype, resulting in the non-cell-autonomous induction of secondary senescence. However, the induction, regulation and physiological role of secondary senescence in vivo remain largely unclear. Here we generated senescence-inducible mouse models expressing either the constitutively active form of MEK1 or MKK6 and mCherry, to map primary and secondary senescent cells.
View Article and Find Full Text PDFWhile the intestinal epithelium has the highest cellular turnover rates in the mammalian body, it is also considered one of the tissues most resilient to aging-related disorders. Here, we reveal an innate protective mechanism that safeguards intestinal stem cells (ISCs) from environmental conditions in the aged intestine. Using in vivo phenotypic analysis, transcriptomics, and in vitro intestinal organoid studies, we show that age-dependent activation of interferon-γ (IFN-γ) signaling and inactivation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling are responsible for establishing an equilibrium of Lgr5 ISCs-between active and quiescent states-to preserve the ISC pool during aging.
View Article and Find Full Text PDFDuring embryogenesis, organisms function as a robust system that ensures uniformity within individuals, but they lose robustness and develop variations at advanced ages. However, when and how organisms lose this robustness remains largely elusive. Here, we identified a sharp transition from interindividual uniformity to diversity in the appearance and transcriptional features of age-matched Caenorhabditis elegans in midlife.
View Article and Find Full Text PDFWithin the same species, individuals exhibiting faster growth tend to have shorter lifespans, even if their fast growth arises from early-life pharmacological interventions. However, in vertebrates, the impact of the early-life environment on the growth rate and lifespan has not been fully elucidated. In this study, by utilizing the short-lived African turquoise killifish, which is suitable for a comprehensive life-stage analysis in a brief timeframe, we explored the effects of housing density during the juvenile stage on holistic life traits.
View Article and Find Full Text PDFRecent research has highlighted the importance of the gut microbiome in regulating aging, and probiotics are interventions that can promote gut health. In this study, we surveyed several novel lactic acid bacteria to examine their beneficial effect on organismal health and lifespan in C. elegans.
View Article and Find Full Text PDFLife Sci Alliance
December 2023
The protein kinase DYRK1A encoded in human chromosome 21 is the major contributor to the multiple symptoms observed in Down syndrome patients. In addition, DYRK1A malfunction is associated with various other neurodevelopmental disorders such as autism spectrum disorder. Here, we identified FAM53C with no hitherto known biological function as a novel suppressive binding partner of DYRK1A.
View Article and Find Full Text PDFPrevious studies have revealed the importance of inter-tissue communications for lifespan regulation. However, the inter-tissue network responsible for lifespan regulation is not well understood, even in a simple organism . To understand the mechanisms underlying systemic lifespan regulation, we focused on lifespan regulation by the insulin/insulin-like growth factor-1 signaling (IIS) pathway; IIS reduction activates the DAF-16/FOXO transcription factor, which results in lifespan extension.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2021
The DYRK (Dual-specificity tYrosine-phosphorylation Regulated protein Kinase) family consists of five related protein kinases (DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4). DYRKs show homology to Drosophila Minibrain, and DYRK1A in human chromosome 21 is responsible for various neuronal disorders including human Down syndrome. Here we report identification of cellular proteins that associate with specific members of DYRKs.
View Article and Find Full Text PDFEnvironmental conditions can cause phenotypic changes, part of which can be inherited by subsequent generations via soma-to-germline communication. However, the signaling molecules or pathways that mediate intertissue communication remain unclear. Here, we show that intertissue small RNA communication systems play a key role in the acquisition and inheritance of hormesis effects - stress-induced stress resistance - in Caenorhabditis elegans.
View Article and Find Full Text PDFChanges in epigenetic states affect organismal homeostasis, including stress resistance. However, the mechanisms coordinating epigenetic states and systemic stress resistance remain largely unknown. Here, we identify the intestine-to-germline communication of epigenetic states, which intergenerationally enhances stress resistance in C.
View Article and Find Full Text PDFNeurotrophic signaling regulates neural cell behaviors in development and physiology, although its role in regeneration has not been fully investigated. Here, we examined the role of neurotrophic signaling in Xenopus laevis tadpole tail regeneration. After the tadpole tails were amputated, the expression of neurotrophin ligand family genes, especially ngf and bdnf, was up-regulated as regeneration proceeded.
View Article and Find Full Text PDFInflamm Regen
December 2018
Throughout life, organisms are subjected to a variety of environmental perturbations, including temperature, nutrient conditions, and chemical agents. Exposure to external signals induces diverse changes in the physiological conditions of organisms. Genetically identical individuals exhibit highly phenotypic variations, which suggest that environmental variations among individuals can affect their phenotypes in a cumulative and inhomogeneous manner.
View Article and Find Full Text PDFLineage specification of the three germ layers occurs during early embryogenesis and is critical for normal development. The nucleosome remodeling and deacetylase (NuRD) complex is a repressive chromatin modifier that plays a role in lineage commitment. However, the role of chromodomain helicase DNA-binding protein 4 (CHD4), one of the core subunits of the NuRD complex, in neural lineage commitment is poorly understood.
View Article and Find Full Text PDFEpithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates.
View Article and Find Full Text PDFOrganismal lifespan is highly plastic in response to environmental cues, and dietary restriction (DR) is the most robust way to extend lifespan in various species. Recent studies have shown that sex also is an important factor for lifespan regulation; however, it remains largely unclear how these two factors, food and sex, interact in lifespan regulation. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites are essential for the short-term succession of the species.
View Article and Find Full Text PDFThe well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans.
View Article and Find Full Text PDFThe molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors.
View Article and Find Full Text PDFIntermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting.
View Article and Find Full Text PDFDeregulated activation of RAS/extracellular signal-regulated kinase (ERK) signaling and defects in retinoic acid receptor (RAR) signaling are both implicated in many types of cancers. However, interrelationships between these alterations in regulating cancer cell fates have not been fully elucidated. Here, we show that RAS/ERK and RAR signaling pathways antagonistically interact with each other to regulate colorectal cancer (CRC) cell fates.
View Article and Find Full Text PDFThe process of cell reprogramming has been characterized considerably since the successful generation of induced pluripotent stem cells. However, the importance of cell-cell communications for cellular reprogramming remains largely unknown. Secreted factors, which are expressed and secreted during reprogramming, may influence the reprogramming efficiency.
View Article and Find Full Text PDFRecent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells.
View Article and Find Full Text PDFDietary restriction regimens lead to enhanced stress resistance and extended life span in many species through the regulation of fasting and/or diet-responsive mechanisms. The fasting stimulus is perceived by sensory neurons and causes behavioral and metabolic adaptations. Octopamine (OA), one of the Caenorhabditis elegans neurotransmitters, is involved in behavioral adaptations, and its levels are increased under fasting conditions.
View Article and Find Full Text PDFThe Activin/Nodal/TGF-β signaling pathway plays a major role in maintaining mouse epiblast stem cells (EpiSCs). The EpiSC-maintaining medium, which contains Activin A and bFGF, induces differentiation of mouse embryonic stem cells (ESCs) to EpiSCs. Here, we show that Activin A also has an ability to efficiently propagate ESCs without differentiation to EpiSCs when combined with a MEK inhibitor PD0325901.
View Article and Find Full Text PDFHormesis is a biological phenomenon, whereby exposure to low levels of toxic agents or conditions increases organismal viability. It thus represents a beneficial aspect of adaptive responses to harmful environmental stimuli. Here we show that hormesis effects induced in the parental generation can be passed on to the descendants in Caenorhabditis elegans.
View Article and Find Full Text PDF