Publications by authors named "Eirini Trompouki"

Telomere shortening occurs in multiple tissues throughout aging. When telomeres become critically short, they trigger DNA-damage responses and p53 stabilization, leading to apoptosis or replicative senescence. In vitro, cells with short telomeres activate the cGAS-STING innate immune pathway resulting in type-I interferon-based inflammation and senescence.

View Article and Find Full Text PDF

Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3.

View Article and Find Full Text PDF

Introduction: Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit.

View Article and Find Full Text PDF

Although adenosine deaminase 2 (ADA2) is considered an extracellular ADA, evidence questions the physiological relevance of this activity. Our study reveals that ADA2 localizes within the lysosomes, where it is targeted through modifications of its glycan structures. We show that ADA2 interacts with DNA molecules, altering their sequences by converting deoxyadenosine (dA) to deoxyinosine (dI).

View Article and Find Full Text PDF

The ability of an organism to overcome infectious diseases has traditionally been linked to killing invading pathogens. Accumulating evidence, however, indicates that, apart from restricting pathogen loads, organismal survival is coupled to an additional yet poorly understood mechanism called disease tolerance. Here we report that p16 immune cells play a key role in establishing disease tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • Myelodysplastic/myeloproliferative diseases in children are serious health issues often leading to fatal outcomes, and advancements in next-generation sequencing (NGS) have uncovered new genetic variants that help understand these conditions.
  • However, many of these variants are classified as variants of unknown significance (VUS), making it difficult to provide accurate diagnoses and targeted treatments.
  • To overcome this challenge, researchers have developed a fast zebrafish embryo model that allows them to quickly evaluate new genetic variants and therapeutic options, exemplified by a specific NRAS mutation found in a young patient, which was linked to myeloproliferative effects and can be treated with MEK inhibitors.
View Article and Find Full Text PDF

Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow.

View Article and Find Full Text PDF

Transposable elements (TEs) are dispersed repetitive DNA sequences that can move within a genome. Even though hundreds of years of evolution have led to the accumulation of mutations that render most TEs unable to transpose, they still exert multiple important functions. They play a role in hematopoiesis, especially during periods of high cellular plasticity, such as development, regeneration and aging.

View Article and Find Full Text PDF

Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages.

View Article and Find Full Text PDF

Purpose Of Review: Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors.

View Article and Find Full Text PDF

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery.

View Article and Find Full Text PDF

The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation.

View Article and Find Full Text PDF

All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing.

View Article and Find Full Text PDF

Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria adapt to a cell's metabolic needs, which is especially important for T cells that change their metabolism based on signals and environment.
  • * The synthesis of the mitochondrial lipid cardiolipin is essential for maintaining the function of CD8 T cells, particularly when they need to respond to antigens and for memory cell differentiation under stress.
  • * T cells lacking the enzyme PTPMT1, which helps synthesize cardiolipin, show impaired function, highlighting the importance of cardiolipin regulation in T cell immunity, especially evident in conditions like Barth syndrome.
View Article and Find Full Text PDF

Genome-wide association studies identify genomic variants associated with human traits and diseases. Most trait-associated variants are located within cell-type-specific enhancers, but the molecular mechanisms governing phenotypic variation are less well understood. Here, we show that many enhancer variants associated with red blood cell (RBC) traits map to enhancers that are co-bound by lineage-specific master transcription factors (MTFs) and signaling transcription factors (STFs) responsive to extracellular signals.

View Article and Find Full Text PDF

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos.

View Article and Find Full Text PDF

During neuronal differentiation, the transcriptional profile and the epigenetic context of neural committed cells is subject to significant rearrangements, but a systematic quantification of global histone modification changes is still missing. Here, we show that H3K79me2 increases and H3K27ac decreases globally during in-vitro neuronal differentiation of murine embryonic stem cells. DOT1L mediates all three degrees of methylation of H3K79 and its enzymatic activity is critical to modulate cellular differentiation and reprogramming.

View Article and Find Full Text PDF

Hematopoietic stem and progenitor cell (HSPC) formation and lineage differentiation involve gene expression programs orchestrated by transcription factors and epigenetic regulators. Genetic disruption of the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7) expanded phenotypic HSPCs, erythroid, and myeloid lineages in zebrafish and mouse embryos. CHD7 acts to suppress hematopoietic differentiation.

View Article and Find Full Text PDF

Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2.

View Article and Find Full Text PDF