Publications by authors named "Efrain Escudero-Leyva"

Background: Endohyphal microbial communities, composed of bacteria and viruses residing within fungal hyphae, play important roles in shaping fungal phenotypes, host interactions, and ecological functions. While endohyphal bacteria have been shown to influence fungal pathogenicity, secondary metabolism, and adaptability, much remains unknown about their diversity and host specificity. Even less is known about endohyphal viruses, whose ecological roles and evolutionary dynamics are poorly understood.

View Article and Find Full Text PDF

Sloths have the slowest digestion among mammals, requiring 5-20 times longer to digest food than other herbivores, which suggests differences in their gut microbiota, particularly in plant-fiber-degrading microorganisms. Bradypus variegatus has a lower metabolic rate and moves less than Choloepus hoffmanni. However, no comprehensive studies have compared the microbiota (e.

View Article and Find Full Text PDF

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.

View Article and Find Full Text PDF

Fungi exhibit a wide range of ecological guilds, but those that live within the inner tissues of plants (also known as endophytes) are particularly relevant due to the benefits they sometimes provide to their hosts, such as herbivory deterrence, disease protection, and growth promotion. Recently, endophytes have gained interest as potential biocontrol agents against crop pathogens, for example, coffee plants (). Published results from research performed in our laboratory showed that endophytic fungi isolated from wild Rubiaceae plants were effective in reducing the effects of the American leaf spot of coffee ().

View Article and Find Full Text PDF

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

View Article and Find Full Text PDF

Aims: The American leaf spot, caused by Mycena citricolor, is an important disease of coffee (Coffea arabica), mostly in Central America. Currently, there are limited pathogen control alternatives that are environment friendly and economically accessible. The use of fungi isolated from the plant endomycobiota in their native habitats is on the rise because studies show their great potential for biological control.

View Article and Find Full Text PDF

Introduction: Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family is extremely diverse and abundant in Central America and contains several economically important genera, e.g.

View Article and Find Full Text PDF

We studied the physicochemical characteristics and mycobiota associated to five key historic documents from Costa Rica, including the Independence Act of Costa Rica from 1821. We used nondestructive techniques (i.e.

View Article and Find Full Text PDF

Hypocrella, Moelleriella and related species in the Hypocreales (Ascomycota, Sordariomycetes) cause epizootics of whiteflies and scale insects in nature. However, studies on their host specificity, virulence, infection cycles, optimal development under laboratory conditions, and compatibility with other control methods, are unexplored for most species. Under laboratory conditions, the virulence of several isolates of field-collected hypocrealean fungi (Hypocrella, Moelleriella, Regiocrella, and Verticillium) was determined on Bemisia tabaci eggs and 4th instar nymphs.

View Article and Find Full Text PDF

Living organisms can induce deterioration of cultural heritage. Conservation strategies aimed at avoiding damage and aiding restoration, require a comprehensive knowledge of structure, chemical composition, and identity of microorganisms that colonize artworks. The National Theatre of Costa Rica (NTCR), a building with historic architecture, houses several oil paintings from the nineteenth century, some with visible signs of biodeterioration.

View Article and Find Full Text PDF

In Mexico little is known about high-altitude glacial psychrotolerant or psychrophilic fungal species, with most glacial fungi isolated from polar environments or Alpine glaciers. It has been documented that some of these species may play an important role in bioremediation of contaminated environments with heavy metals. In the present study, 75 fungi were isolated from glaciers in Citlaltépetl (5675 masl) and Iztaccíhuatl (5286 masl) volcanoes.

View Article and Find Full Text PDF

The nuclear ribosomal DNA internal transcribed spacer (ITS) is accepted as the genetic marker or barcode of choice for the identification of fungal samples. Here, we present a protocol to analyze fungal ITS data, from quality preprocessing of raw sequences to identification of operational taxonomic units (OTUs), taxonomic classification, and assignment of functional traits. The pipeline relies on well-established and manually curated data collections, namely the UNITE database and the FUNGuild script.

View Article and Find Full Text PDF

The archive of the Universidad de Costa Rica maintains a nineteenth-century French collection of drawings and lithographs in which the biodeterioration by fungi is rampant. Because of nutritional conditions in which these fungi grew, we suspected that they possessed an ability to degrade cellulose. In this work our goal was to isolate and identify the fungal species responsible for the biodegradation of a nineteenth-century art collection and determine their cellulolytic activity.

View Article and Find Full Text PDF