Publications by authors named "Duckhyeon Seo"

Sn is a promising candidate anode material with a high theoretical capacity (994 mAh/g). However, the drastic structural changes of Sn particles caused by their pulverization and aggregation during charge-discharge cycling reduce their capacity over time. To overcome this, a TiNi shape memory alloy (SMA) was introduced as a buffer matrix.

View Article and Find Full Text PDF

Recently, applications for lithium-ion batteries (LIBs) have expanded to include electric vehicles and electric energy storage systems, extending beyond power sources for portable electronic devices. The power sources of these flexible electronic devices require the creation of thin, light, and flexible power supply devices such as flexile electrolytes/insulators, electrode materials, current collectors, and batteries that play an important role in packaging. Demand will require the progress of modern electrode materials with high capacity, rate capability, cycle stability, electrical conductivity, and mechanical flexibility for the time to come.

View Article and Find Full Text PDF

TiNi shape-memory-alloy thin films can be used as small high-speed actuators or sensors because they exhibit a rapid response rate. In recent years, the transformation temperature of these films, manufactured via a magnetron sputtering method, was found to be lower than that of the bulk alloys owing to the small size of the grain. In this study, deposition conditions (growth rate, film thickness, and substrate temperature) affecting the grain size of thin films were investigated.

View Article and Find Full Text PDF