Publications by authors named "Duanzheng Wu"

The study of the excited-state properties of diamond is crucial for understanding its electronic structure and surface physicochemical properties, providing theoretical support for its applications in optoelectronic devices, quantum technologies, and catalysis. This research employs Density Functional Theory (DFT) with the fixed electron occupation method to simulate the electron excitation. Using the Generalized Gradient Approximation (GGA) within DFT, we systematically investigated the excited-state characteristics of diamond by simulating the transfer of a fraction of electrons from the Highest Occupied Crystal Orbital (HOCO) to the Lowest Unoccupied Crystal Orbital (LUCO).

View Article and Find Full Text PDF

Understanding the formation, structural evolution, and response of water ice at the nanoscale is essential for advancing research in fields such as cryo-electron microscopy and atmospheric science. In this work, we used environmental transmission electron microscopy (ETEM) to investigate the formation of water ice nanostructures and the etching and charging behaviors of ice under fast electron irradiation. These nanostructures were observed to be suspended along the edges of copper grids and supported on few-layer graphene.

View Article and Find Full Text PDF