Publications by authors named "Duane C Button"

The goal of this work was to develop an adaptive rehabilitation technique using a haptic wrist robot that would induce cross-education to an untrained limb. Fourteen individuals with Multiple Sclerosis (MS) and eight non-affected adults completed an eight-week intervention. MS participants were placed into two groups, training their more affected limb (direct training), and training their less affected limb (indirect training).

View Article and Find Full Text PDF

Introduction: Men and women have different performance abilities, where women have greater tolerance for fatigue in long-distance exercise. Part of this greater tolerance may be due, in part, differences in men's and women's mental fatigue capacity during exercise. Thus, the aim of this study was to examine the effect of cycling endurance exercise, along with mental fatigue, on the sex dependent differences in exercise tolerance.

View Article and Find Full Text PDF

Stretching the antagonist muscle to enhance agonist performance has gained considerable attention. However, most studies have focused on one stretching duration. Hence, the aim of this study was to compare varying durations (40-, 80-, and 120-seconds) of antagonist (dorsiflexors) static stretching (SS) on agonist (plantar flexors: PF) muscle performance.

View Article and Find Full Text PDF

Introduction: The bilateral deficit (BLD) is a reduction in the amount of force during a bilateral task vs. the total force from the unilateral limbs performing the same task. We quantified the BLD during an upper body Wingate Anaerobic Test (WAnT) and evaluated the influence of sex and load on the BLD in force.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of sex, muscle thickness, and subcutaneous fat thickness (SFT) on corticospinal excitability outcome measures of the biceps brachii. Eighteen participants (10 males and 8 females) completed this study. Ultrasound was used to assess biceps brachii muscle thickness and the overlying SFT.

View Article and Find Full Text PDF

Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.

View Article and Find Full Text PDF

Introduction: The upper body Wingate Anaerobic Test (WAnT) is a 30-s maximal effort sprint against a set load (percentage of body mass). However, there is no consensus on the optimal load and no differential values for males and females, even when there are well-studied anatomical and physiological differences in muscle mass for the upper body. Our goal was to describe the effects of load, sex, and crank position on the kinetics, kinematics, and performance of the upper body WAnT.

View Article and Find Full Text PDF

Unlabelled: An elastic band wrapped around the distal thighs has recently been proposed as a method for reducing dynamic knee valgus (medial movement of the knee joint in the frontal/coronal plane) while performing squats. The rationale behind this technique is that, by using an external force to pull the knees into further knee valgus, the band both exaggerates the pre-existing movement and provides additional local proprioceptive input, cueing individuals to adjust their knee alignment. If these mechanisms are true, then elastic bands might indeed reduce dynamic knee valgus, which could be promising for use in injury prevention as excessive knee valgus may be associated with a greater risk of sustaining an ACL rupture and/or other knee injuries.

View Article and Find Full Text PDF

The aim of this study was to compare the muscle activity of the gluteus medius (GMe), gluteus maximus (GMa), biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM) and erector spinae (ES) as well as medial knee displacement (MKD) while using varying stiffness resistance bands (red: 1.68 kg; black: 3.31 kg; gold: 6.

View Article and Find Full Text PDF

The present study aimed to investigate whether a 2-wk arm cycling sprint interval training (SIT) program modulated corticospinal pathway excitability in healthy, neurologically intact participants. We employed a pre-post study design with two groups: ) an experimental SIT group and ) a nonexercising control group. Transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of corticospinal axons were used at baseline and post-training to provide indices of corticospinal and spinal excitability, respectively.

View Article and Find Full Text PDF

The association of localized pain sensitivity in the residual limb and prosthesis use has clinical implications, however, rarely been assessed. This study aimed to investigate pain sensitivity and explore its range, variability, and association with prosthesis use alongside other demographic and clinical characteristics of veterans with transtibial amputation. Pain sensitivity was determined as pressure pain threshold (PPT) and pressure tolerance (PT) in 19 male veterans with a mean age of 49.

View Article and Find Full Text PDF

It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints.

View Article and Find Full Text PDF

The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC.

View Article and Find Full Text PDF

Purpose: The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses.

Methods: Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale.

View Article and Find Full Text PDF

We evaluated the effects of muscle fatigue on hand-tracking performance in young adults. Differences were quantified between wrist flexion and extension fatigability, and between males and females. Participants were evaluated on their ability to trace a pattern using a 3-degrees-of-freedom robotic manipulandum before (baseline) and after (0, 1, 2, 4, 6, 8, and 10 mins) a submaximal-intensity fatigue protocol performed to exhaustion that isolated the wrist flexors or extensors on separate days.

View Article and Find Full Text PDF

We examined the effects of attentional focus cues on maximal voluntary force output of the elbow flexors and the underlying physiological mechanisms. Eleven males participated in two randomized experimental sessions. In each session, four randomized blocks of three maximal voluntary contractions (MVC) were performed.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of chronic resistance training on corticospinal excitability and short intracortical inhibition of the biceps brachii. Eight chronic resistance-trained (RT) and eight non-RT participants completed one experimental session including a total of 30 brief (7 s) elbow flexors isometric contractions at various force outputs [15, 25 and 40% of maximum voluntary contraction (MVC)]. Before the contractions, MVC, maximal compound muscle action potential (M) during 5% MVC and active motor threshold (AMT) at the three various force outputs were recorded.

View Article and Find Full Text PDF

: We examined corticospinal and spinal excitability across multiple power outputs during arm cycling using a weak and strong stimulus intensity. : We elicited motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) in the biceps brachii using magnetic stimulation over the motor cortex and electrical stimulation of corticospinal axons during arm cycling at six different power outputs (i.e.

View Article and Find Full Text PDF

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation and transmastoid electrical stimulation to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at 2 positions, 6 and 12 o'clock.

View Article and Find Full Text PDF

Introduction: The interactive effect of delayed-onset muscle soreness (DOMS) and a topical analgesic on corticospinal excitability was investigated.

Methods: Thirty-two participants completed Experiments A (no DOMS) and B (DOMS). For each experiment, participants were randomly assigned to two groups: 1) topical analgesic gel (topical analgesic, n = 8), or 2) placebo gel (placebo, n = 8) group.

View Article and Find Full Text PDF

Spinal motoneurons (MN) exhibit exercise-dependent adaptations to increased activity, such as exercise and locomotion, as well as decreased activity associated with disuse, spinal cord injury, and aging. The development of several experimental approaches, in both human and animal models, has contributed significantly to our understanding of this plasticity. The purpose of this review is to summarize how intracellular recordings in an animal model and motor unit recordings in a human model have, together, contributed to our current understanding of exercise-dependent MN plasticity.

View Article and Find Full Text PDF

Background: The present study compared corticospinal excitability to the biceps brachii muscle during arm cycling at a self-selected and a fixed cadence (SSC and FC, respectively). We hypothesized that corticospinal excitability would not be different between the two conditions.

Methods: The SSC was initially performed and the cycling cadence was recorded every 5 s for one minute.

View Article and Find Full Text PDF

This study examined the influence of the Theraband CLX gold band on lower-limb muscle activity and kinematics during an overhead barbell squat. Participants performed two sets (band and no-band) of 12 repetitions of overhead barbell squats at 25% bodyweight. Three-dimensional kinematics were measured using motion capture with rigid bodies placed bilaterally on the foot, shank, thigh and thorax.

View Article and Find Full Text PDF

Purpose: To compare the physiological and perceptual responses of the upper and lower body to all-out cyclical sprints with short or long rest periods between sprints.

Methods: Ten recreationally trained males completed four 10 × 10 s sprint protocols in a randomized order: upper body with 30 s and 180 s of rest between sprints, and lower body with 30 s and 180 s of rest between sprints. Additionally, maximum voluntary contractions (MVC) were measured at pre-sprint and post-sprints 5 and 10.

View Article and Find Full Text PDF