Phys Fluids (1994)
May 2025
The glomerulus is a critical filtration unit in the kidney, yet its complex three-dimensional architecture has long hindered a comprehensive understanding of its function and regulation. Here, we present an integrated framework that combines imaging based three-dimensional modeling, computational fluid dynamics simulations, and reconstruction to elucidate the structural and hemodynamic complexity of the glomerulus. Our analyses reveal that the inherent asymmetry between afferent and efferent arterioles is critical for establishing a precise pressure-flow relationship and regulating hemodynamics.
View Article and Find Full Text PDFArterial occlusion by thrombosis is the immediate cause of some strokes, heart attacks, and peripheral artery disease. Most prior studies assume that coagulation creates the thrombus. However, a contradiction arises as whole blood (WB) clots from coagulation are too weak to stop arterial blood pressures (> 150 mmHg).
View Article and Find Full Text PDFThe structure of occlusive arterial thrombi is described herein. Macroscopic thrombi were made from whole blood in a collagen-coated, large-scale stenosis model with high shear flow similar to an atherosclerotic artery. The millimeter-sized thrombi were harvested for histology and scanning electron microscopy.
View Article and Find Full Text PDFvon Willebrand factor (VWF) is essential for the induction of arterial thrombosis. In this study, we investigated the critical role of platelet VWF in occlusive thrombosis formation at high shear in mice that do not express platelet VWF (Nbeal2-/-). Using in silico modeling, in vitro high-shear microfluidics, and an in vivo Folts model of arterial thrombosis we reproduced the platelet dynamics that occur under pathological flow in a stenosed vessel.
View Article and Find Full Text PDF