Publications by authors named "Doin Jeon"

Pulmonary fibrosis (PF) is a respiratory disease that causes serious respiratory problems. The effects of French marine pine bark extract (Pycnogenol®), with antioxidant and anti-inflammatory properties, were investigated on lung fibrosis in polyhexamethylene guanidine (PHMG)-treated mice. Mice were separated into four groups (n = 6): vehicle control (VC, saline 50 μl); PHMG (1.

View Article and Find Full Text PDF

Polyhexamethylene guanidine phosphate (PHMG) is an antimicrobial biocide that causes severe lung injury accompanied with inflammation and subsequent fibrosis. Cytokines mediate the inflammatory response, leading to fibrosis in injured tissues. PHMG is known to induce the expression of various cytokines in vitro and in vivo.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases.

View Article and Find Full Text PDF

Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner.

View Article and Find Full Text PDF

Inhalation of polyhexamethylene guanidine (PHMG) causes irreversible pulmonary injury, such as pulmonary fibrosis. However, the mechanism underlying PHMG-induced lung injury is unclear. In this study, we compared the difference in time-dependent lung injury between PHMG- and bleomycin (BLM)-treated mice and determined cytokines involved in inducing lung injury by performing cytokine antibody array analysis.

View Article and Find Full Text PDF

Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets.

View Article and Find Full Text PDF

Nod-like receptors (NLRs) are cytosolic sensors for microbial molecules. Νucleotide-binding oligomerization domain (NOD)1 and NOD2 recognize the peptidoglycan derivatives, meso-diaminopimelic acid (meso-DAP) and muramyl dipeptide (MDP), respectively, and trigger host innate immune responses. In the present study, we examined the function of NOD1 and NOD2 on innate immune responses in human periodontal ligament (PDL) cells.

View Article and Find Full Text PDF

Objective: Toll-like receptors (TLR) signaling has dual effect of promoting tumor progression and anti-cancer property. This study was designed to determine the effect of polyinosinic-polycytidilic acid (poly I:C), a TLR3 agonist, on the proliferation of oral cancer cells.

Materials And Methods: Human oral squamous cell carcinoma cell lines, YD-10B and YD-8, were used.

View Article and Find Full Text PDF

Background: Toll-like receptors (TLRs) signaling has been found to promote cell proliferation, invasiveness, and angiogenesis in a variety of cancers. This study was performed to examine whether TLR signaling is involved in tumor progression of an oral squamous cell carcinoma, YD-10B cells.

Methods: TLRs expression was examined by reverse transcription-polymerase chain reaction (RT-PCR) in YD-10B cells.

View Article and Find Full Text PDF