Publications by authors named "Dmitrij Dedukh"

Centromeres are an important part of chromosomes which direct chromosome segregation during cell division. Their modifications can therefore explain the unusual mitotic and meiotic behaviour of certain chromosomes, such as the germline-restricted chromosome (GRC) of songbirds. This chromosome is eliminated from somatic cells during early embryogenesis and later also from male germ cells during spermatogenesis.

View Article and Find Full Text PDF

Hybridogenesis is a unique type of reproduction found in hybrids, producing offspring that are partial (hemiclonal) genetic replicas of one parent. Along the southern coast of Hokkaido, Japan, two types of interspecies hybrids have been identified among three Hexagrammos species: Hexagrammos octogrammus (Hoc), H. otakii (Hot), and Hexagrammos agrammus (Hag).

View Article and Find Full Text PDF

Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species.

View Article and Find Full Text PDF

Most eukaryotes maintain the stability of their cellular genome sizes to ensure genome transmission to offspring through sexual reproduction. However, some alter their genome size by selectively eliminating parts or increasing ploidy at specific developmental stages. This phenomenon of genome elimination or whole genome duplication occurs in animal hybrids reproducing asexually.

View Article and Find Full Text PDF

Gametogenesis produces gametes as a piece of genetic information transmitted to the offspring. While during sexual reproduction, progeny inherits a mix of genetic material from both parents, asexually reproducing organisms transfer a copy of maternal or paternal DNA to the progeny clonally. Parthenogenetic, gynogenetic and hybridogenetic animals have developed various mechanisms of gametogenesis, however, their inheritance is not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • - Reproductive isolation and hybrid sterility prevent genetic mixing between species, but hybridization of bighead and North African catfish in Thailand shows complex evolution, including the formation of all-female lineages that can reproduce clonally.
  • - The study analyzed meiosis in female hybrids, revealing over 95% exhibited chromosome asynapsis yet could produce mature eggs, indicating a unique path to reproductive success.
  • - Findings suggest that the ability of female hybrid catfish to reproduce clonally may offer insights into the effects of hybridization and mechanisms of asexual reproduction, drawing parallels with known clonal species in the animal kingdom.
View Article and Find Full Text PDF
Article Synopsis
  • - Hybrid sterility in catfish occurs due to differences in parental genomes affecting meiosis, which is crucial for reproduction.
  • - The study focused on bighead catfish and North African catfish, analyzing their genome divergence and meiotic behavior to understand sterility in their male hybrids.
  • - Results indicated that significant differences in satellite DNA (satDNA) between the parent species are likely responsible for meiotic failure, rather than differences in chromosome numbers.
View Article and Find Full Text PDF
Article Synopsis
  • The study examines how hybridization affects reproductive mechanisms in fish, specifically focusing on the Cobitidae family.
  • Hybrids display varying ploidy levels (diploid and triploid) that impact gamete development, with diploid hybrids producing normal diploid gametes while triploid hybrids struggle with abnormal chromosome pairing leading to sterility.
  • The findings suggest that changes in ploidy and genome ratios can significantly alter reproductive pathways, influencing whether hybrids reproduce sexually or asexually.
View Article and Find Full Text PDF

Background: The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach.

View Article and Find Full Text PDF

Hybrid taxa from the genus Pelophylax can propagate themselves in a modified way of sexual reproduction called hybridogenesis ensuring the formation of clonal gametes containing the genome of only one parental (host) species. Pelophylax grafi from South-Western Europe is a hybrid composed of P. ridibundus and P.

View Article and Find Full Text PDF

Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization.

View Article and Find Full Text PDF

Asexual reproduction can be triggered by interspecific hybridization, but its emergence is supposedly rare, relying on exceptional combinations of suitable genomes. To examine how genomic and karyotype divergence between parental lineages affect the incidence of asexual gametogenesis, we experimentally hybridized fishes (Cobitidae) across a broad phylogenetic spectrum, assessed by whole exome data. Gametogenic pathways generally followed a continuum from sexual reproduction in hybrids between closely related evolutionary lineages to sterile or inviable crosses between distant lineages.

View Article and Find Full Text PDF

Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs.

View Article and Find Full Text PDF
Article Synopsis
  • Hybridogenesis is a reproductive strategy seen in certain frog hybrids where one genome is eliminated from gonocytes but preserved in adult spermatogonial stem cells.
  • The study examined testis morphology and chromosome composition in these frogs to better understand how genome elimination occurs at different stages of spermatogenesis.
  • Findings revealed that while some cells successfully complete genome elimination, a significant portion fails, resulting in a high degree of abnormal sperm cells and indicating that hybridogenesis is an inefficient reproductive process.
View Article and Find Full Text PDF

Interspecific hybridization can disrupt canonical gametogenic pathways, leading to the emergence of clonal and hemiclonal organisms. Such gametogenic alterations usually include genome endoreplication and/or premeiotic elimination of one of the parental genomes. The hybrid frog exploits genome endoreplication and genome elimination to produce haploid gametes with chromosomes of only one parental species.

View Article and Find Full Text PDF

An intriguing outcome of hybridisation is the emergence of clonally and hemiclonally reproducing hybrids, that can sustain, reproduce, and lead to the emergence of polyploid forms. However, the maintenance of diploid and polyploid hybrid complexes in natural populations remains unresolved. We selected water frogs from the Pelophylax esculentus complex to study how diploid and triploid hybrids, which reproduce hemiclonally via hybridogenesis, are maintained in natural populations.

View Article and Find Full Text PDF

Interspecific hybridization may trigger the transition from sexual reproduction to asexuality, but mechanistic reasons for such a change in a hybrid's reproduction are poorly understood. Gametogenesis of many asexual hybrids involves a stage of premeiotic endoreplication (PMER), when gonial cells duplicate chromosomes and subsequent meiotic divisions involve bivalents between identical copies, leading to production of clonal gametes. Here, we investigated the triggers of PMER and whether its induction is linked to intrinsic stimuli within a hybrid's gonial cells or whether it is regulated by the surrounding gonadal tissue.

View Article and Find Full Text PDF

Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species.

View Article and Find Full Text PDF

Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown.

View Article and Find Full Text PDF

The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages.

View Article and Find Full Text PDF

Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids.

View Article and Find Full Text PDF

We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies.

View Article and Find Full Text PDF

Metazoans usually reproduce sexually, blending the unique identity of parental genomes for the next generation through functional crossing-over and recombination in meiosis. However, some metazoan lineages have evolved reproductive systems where offspring are either full (clonal) or partial (hemiclonal) genetic replicas. In the latter group, the process of uniparental genome elimination selectively eliminates either the maternal or paternal genome from germ cells, and only one parental genome is selected for transmission.

View Article and Find Full Text PDF

Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species and , and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis.

View Article and Find Full Text PDF