Publications by authors named "Ding-Quan Qian"

11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11β-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11β-HSD1 with a small nonsteroidal molecule is therapeutically desirable.

View Article and Find Full Text PDF

11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11β-HSD1, particularly in adipose tissues, has been associated with metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11β-HSD1 with a small nonsteroidal molecule is therapeutically desirable.

View Article and Find Full Text PDF

The histamine H₄ receptor mediates several histamine-induced cellular functions of leukocytes, including cell migration and cytokine production. Recent studies suggest that histamine signaling through the histamine H₄ receptor can also have anti-pruritic and anti-nociceptive functions. 1-(7-(2-amino-6-(4-methylpiperazin-1-yl) pyrimidin-4-yl)-3, 4-dihdroisoquinolin-2(1H)-yl)-2-cyclopentylethanone (INCB38579) is a novel small molecule antagonist of the human and rodent histamine H₄ receptors with at least 80-fold selectivity over the human histamine H₁, H₂ and H₃ receptors, and has good pharmacokinetic properties in rats and mice.

View Article and Find Full Text PDF

A serendipitous discovery that the metalloprotease binding profile of a novel class of 2-carboxamide-3-hydroxamic acid piperidines could be significantly attenuated by the modification of the unexplored P1 substituent enabled the design and synthesis of a novel 2-carboxamide-1-hydroxamic acid cyclohexyl scaffold core that exhibited excellent HER-2 potency and unprecedented MMP-selectivity that we believe would not have been possible via conventional P1' perturbations.

View Article and Find Full Text PDF

In an effort to obtain a MMP selective and potent inhibitor of HER-2 sheddase (ADAM-10), the P1' group of a novel class of (6S,7S)-7-[(hydroxyamino)carbonyl]-6-carboxamide-5-azaspiro[2.5]octane-5-carboxylates was attenuated and the structure-activity relationships (SAR) will be discussed. In addition, it was discovered that unconventional perturbation of the P2' moiety could confer MMP selectivity, which was hypothesized to be a manifestation of the P2' group effecting global conformational changes.

View Article and Find Full Text PDF

The design, synthesis, evaluation, and identification of a novel class of (6S,7S)-N-hydroxy-6-carboxamide-5-azaspiro[2.5]octane-7-carboxamides as the first potent and selective inhibitors of human epidermal growth factor receptor-2 (HER-2) sheddase is described. Several compounds were identified that possess excellent pharmacodynamic and pharmacokinetic properties and were shown to decrease tumor size, cleaved HER-2 extracellular domain plasma levels, and potentiate the effects of the humanized anti-HER-2 monoclonal antibody (trastuzumab) in vivo in a HER-2 overexpressing cancer murine xenograft model.

View Article and Find Full Text PDF

Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis.

View Article and Find Full Text PDF

Phenoxathiin cation radical perchlorate (PO.+ClO4(-)) added stereospecifically to cyclopentene, cyclohexene, cycloheptene, and 1,5-cyclooctadiene to give 1,2-bis(5-phenoxathiiniumyl)cycloalkane diperchlorates (4-7) in good yield. The diaxial configuration of the PO+ groups was confirmed with X-ray crystallography.

View Article and Find Full Text PDF

Thianthrene cation radical salts, Th(*)(+) X(-)(X(-) = a, ClO(4)(-); b, PF(6)(-); c, SbF(6)(-)), add to cycloalkenes (C(5)-C(8)) in acetonitrile (MeCN) to form 1,2-bis(5-thianthreniumyl)cycloalkane salts and 1,2-(5,10-thianthreniumdiyl)cycloalkane salts, most of which have now been isolated and characterized. These are called bis- (3, 6, 9, 12) and monoadducts (4, 7, 10, 13). The proportional amount of the monoadduct obtained in the initial stage of the reaction varied with the cycloalkene in the order C(6) << C(5) < C(7) << C(8).

View Article and Find Full Text PDF