In order to develop a novel norcantharidin (NCTD) delivery system with slow drug release and specific targeting characteristics, we have developed a Poloxamer-based NCTD thermosensitive in situ gel. The evaluation of the characteristics of this system using both in vitro and in vivo methods was previously reported. However, its anti-tumor activity in vivo is still not confirmed.
View Article and Find Full Text PDFWe demonstrate an atomistic nucleation and growth mechanism for single-wall carbon nanotubes (SWNTs) on catalytic nanoparticle surfaces based on a core-shell model. We show by ab initio calculations that strain relief between the metal core and carbon shell plays a crucial role in facilitating the hexagonal tubular growth. The incipient nucleation begins with the formation of a hemispherical fullerene cap by a size-selected core-shell bonding process which is followed by a repeated phase-separating growth mode with increasing energetic stability via periodic pulsatile strain relief along the tubular growth pathway.
View Article and Find Full Text PDFIn this paper, we prepared a series of chalcogenide semiconductor nanocrystals in controllable shape and size via a facile wet route using metal nitrates and sulfur or selenium powder as precursors and octadecylamine (ODA) as solvent. The as-obtained chalcogenides included CdS, MnS, Ag(2)S, PbS, Cu(1.8)S, Bi(2)S(3), ZnS, Zn(x)Cd(1-x)S, as well as Ag(2)Se, Cu(2-x)Se, CdSe, MnSe.
View Article and Find Full Text PDFWe have developed a method for the synthesis of metal oxide nanocrystals with controllable shape and size, which is based on the direct thermal decomposition of metal nitrates in octadecylamine. Mn3O4 nanoparticles and nanorods with different lengths were synthesized by using manganese nitrate as the decomposition material. Other metal oxide nanocrystals such as NiO, ZnO, CeO2, CoO, and Co3O4 were also prepared by this method.
View Article and Find Full Text PDFWe report ab initio identification of initial dissociation pathways for Sb4 and Bi4 tetramer precursors on Si(001). We reveal a two-stage double piecewise rotation mechanism for the tetramer to ad-dimer conversion involving two distinct pathways: one along the surface dimer row via a rhombus intermediate state and the other across the surface dimer row via a rotated rhombus intermediate state. These two-stage double piecewise rotation processes play a key role in lowering the kinetic barrier by establishing and maintaining energetically favorable bonding between adatoms and substrate atoms.
View Article and Find Full Text PDFPhys Rev Lett
April 2005
With the full potential linearized augmented plane method, we theoretically investigated the carrier-induced magnetization reversal in digital (Ga,Mn)As heterostructures with varying distance between the two Mn layers along with the distribution and concentration of external carriers. The presence of external holes induces switching from the antiferromagnetic to ferromagnetic state when d(Mn-Mn)=16.96 A, whereas the addition of electrons produces no significant effect.
View Article and Find Full Text PDFPhys Rev Lett
January 2004
We perform a first principles calculation of the anomalous Hall effect in ferromagnetic bcc Fe. Our theory identifies an intrinsic contribution to the anomalous Hall conductivity and relates it to the k-space Berry phase of occupied Bloch states. This dc conductivity has the same origin as the well-known magneto-optical effect, and our result accounts for experimental measurement on Fe crystals with no adjustable parameters.
View Article and Find Full Text PDF