Publications by authors named "Dheerendra Pandey"

Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear.

View Article and Find Full Text PDF

Manipulation of insect vector behavior by virus-induced plant volatiles is well known. But how the viral disease progression alters the plant volatiles and its effect on vector behavior remains less explored. Our studies tracked changes in volatile profile in progressive infection stages of cotton leaf curl virus (CLCuV) infected plants and their effect on behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the effects of a coagonist targeting GLP-1 and glucagon receptors on kidney problems caused by diabetes and obesity in mouse models.
  • Researchers used different groups of mice fed a high-fat diet or treated with a diabetes-inducing agent to assess changes in kidney function and overall health after 12 to 40 weeks of coagonist treatment.
  • Results showed significant improvements in kidney health, weight loss, and reduced inflammation and fibrosis, indicating that this treatment could mitigate kidney dysfunction linked to diabetes and obesity.
View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. Coagonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) are under clinical investigation for the treatment of obesity and type 2 diabetes. In this study, we have demonstrated the effect of a balanced coagonist in the treatment of NAFLD using mouse models.

View Article and Find Full Text PDF

Background: Obesity, diabetes and dyslipidemica are the key pathogenic stimulus that enhances progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Coagonist of Glucagon Like- Peptide-1 (GLP-1) Receptor (GLP-1R) and Glucagon Receptor (GCGR) are being evaluated for obesity and diabetes. GLP-1 analogs have shown to reverse diabetes and obesity.

View Article and Find Full Text PDF

Dyslipidemia enhances progression of atherosclerosis. Coagonist of GLP-1 and glucagon are under clinical investigation for the treatment of obesity and diabetes. Earlier, we have observed that coagonist reduced circulating and hepatic lipids, independent of its anorexic effects.

View Article and Find Full Text PDF

Coagonists of Glucagon-like peptide-1 (GLP-1) and glucagon receptors are under clinical investigation for treatment of obesity associated with diabetes. In addition to their role in glucose homeostasis, GLP-1 and glucagon modulate lipid metabolism. In this study, we have investigated the role of central GLP-1 receptor (GLP-1R) and glucagon receptor (GCGR) activation in regulation of lipid metabolism in cholesterol-fed hamsters.

View Article and Find Full Text PDF

Hyperlipidemia is often associated with obesity and diabetes, and can lead to serious complications like atherosclerosis and fatty liver disease. Coagonist of GLP-1 and glucagon receptors is a therapy under clinical investigation for treatment of obesity and diabetes. In this study, we have characterized the mechanism of hypolipidemic effect of a balanced coagonist using high cholesterol-fed hamsters.

View Article and Find Full Text PDF

Increased lipid levels in blood contribute to increasing the risk of diabetic complications. Glucagon exerts lipid lowering effects in diabetic state. However, the mechanism behind the lipid reduction by glucagon independent of glucose homeostasis is not well understood.

View Article and Find Full Text PDF

TNF-α converting enzyme (TACE) processes the membrane TNF-α to release the bioactive soluble TNF-α. Several evidences suggest the involvement of TNF-α and TACE in inflammatory bowel disease (IBD). Tissue inhibitor of metalloproteinase (TIMP)-3, an endogenous inhibitor of TACE, is positively associated with silent information regulator (SIRT)-1.

View Article and Find Full Text PDF

Emerging evidence suggest that tumor necrosis factor (TNF)-α plays a major role in pathogenesis of auto-immune hepatitis (AIH) induced liver injury. Blockade of TNF-α synthesis or bio-activity protects against experimental AIH. TNF-α converting enzyme (TACE) is a member of the ADAM (a disintegrin and metalloproteinase) family which processes precursor TNF-α to release soluble TNF-α.

View Article and Find Full Text PDF