Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca release and mitogen-activated protein kinase (MAPK) pathway activation.
View Article and Find Full Text PDFOver 90% of the U.S. adult population suffers from tooth structure loss due to caries.
View Article and Find Full Text PDFMultiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development.
View Article and Find Full Text PDFIt has become clear during recent years that stem cells undergo metabolic remodeling during their activation process. While these metabolic switches take place in pluripotency as well as adult stem cell populations, the rules that govern the switch are not clear. In this review, we summarize some of the transitions in adult and pluripotent cell types and will propose that the key function in this process is the generation of epigenetic metabolites that govern critical epigenetic modifications, and therefore stem cell states.
View Article and Find Full Text PDFThe specification of pluripotent stem cells into the bone-forming osteoblasts has been explored in a number of studies. However, the current body of literature has yet to adequately address the role of Wnt glycoproteins in the differentiation of pluripotent stem cells along the osteogenic lineage. During mouse embryonic stem cell (ESC) in vitro osteogenesis, the noncanonical WNT5a is expressed early on.
View Article and Find Full Text PDFAs the worldwide population grows and life expectancies continue to increase, degenerative diseases of the bones, muscles, and connective tissue are a growing problem for society. Current therapies for osteodegenerative disorders such as hormone replacement therapies, calcium/vitamin D supplements and oral bisphosphonates are often inadequate to stop degeneration and/or have serious negative side effects. Thus, there is an urgent need in the medical community for more effective and safer treatments.
View Article and Find Full Text PDF