Patch foraging is a ubiquitous decision-making process in which animals decide when to abandon a resource patch of diminishing value to pursue an alternative. We developed a virtual foraging task in which mouse behavior varied systematically with patch value. Behavior could be explained by models integrating time and rewards antagonistically, scaled by a slowly varying latent patience state.
View Article and Find Full Text PDFA primary goal of systems neuroscience is to discover how ensembles of neurons transform inputs into goal-directed behavior, a process known as neural computation. A powerful framework for understanding neural computation uses neural dynamics - the rules that describe the temporal evolution of neural activity - to explain how goal-directed input-output transformations occur. As dynamical rules are not directly observable, we need computational models that can infer neural dynamics from recorded neural activity.
View Article and Find Full Text PDFUnderstanding how the collective activity of neural populations relates to computation and ultimately behavior is a key goal in neuroscience. To this end, statistical methods which describe high-dimensional neural time series in terms of low-dimensional latent dynamics have played a fundamental role in characterizing neural systems. Yet, what constitutes a successful method involves two opposing criteria: (1) methods should be expressive enough to capture complex nonlinear dynamics, and (2) they should maintain a notion of interpretability often only warranted by simpler linear models.
View Article and Find Full Text PDFThe goal of theoretical neuroscience is to develop models that help us better understand biological intelligence. Such models range broadly in complexity and biological detail. For example, task-optimized recurrent neural networks (RNNs) have generated hypotheses about how the brain may perform various computations, but these models typically assume a fixed weight matrix representing the synaptic connectivity between neurons.
View Article and Find Full Text PDFPatch foraging presents a ubiquitous decision-making process in which animals decide when to abandon a resource patch of diminishing value to pursue an alternative. We developed a virtual foraging task in which mouse behavior varied systematically with patch value. Mouse behavior could be explained by a model integrating time and rewards antagonistically, scaled by a latent patience state.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2020
Neural computations underlying cognition and behavior rely on the coordination of neural activity across multiple brain areas. Understanding how brain areas interact to process information or generate behavior is thus a central question in neuroscience. Here we provide an overview of statistical approaches for characterizing statistical dependencies in multi-region spike train recordings.
View Article and Find Full Text PDFAdv Neural Inf Process Syst
December 2018
Recent advances in recording technologies have allowed neuroscientists to record simultaneous spiking activity from hundreds to thousands of neurons in multiple brain regions. Such large-scale recordings pose a major challenge to existing statistical methods for neural data analysis. Here we develop highly scalable approximate inference methods for Poisson generalized linear models (GLMs) that require only a single pass over the data.
View Article and Find Full Text PDFNeurons in LIP exhibit ramping trial-averaged responses during decision-making. Recent work sparked debate over whether single-trial LIP spike trains are better described by discrete "stepping" or continuous "ramping" dynamics. We extended latent dynamical spike train models and used Bayesian model comparison to address this controversy.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
January 2017
Unlabelled: Functional connectivity (FC), defined as the statistical dependency between distinct brain regions, has been an important tool in understanding cognitive brain processes. Most of the current works in FC have focused on the assumption of temporally stationary networks. However, recent empirical work indicates that FC is dynamic due to cognitive functions.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
December 2015
With the advances in neuroimaging technology, it is now possible to measure human brain activity with increasing temporal and spatial resolution. This vast amount of spatio-temporal data requires the development of computational methods capable of building an integrated picture of the functional networks for a better understanding of the healthy and diseased brain [1]. Although the construction of these networks from neuroimaging data is well-established [2], current approaches are limited to the characterization of the global topology of static networks where the links between different brain regions represent average connectivity over a long time period [3], [2].
View Article and Find Full Text PDF