Publications by authors named "David Shackelford"

Pre-clinical and clinical studies have demonstrated how dietary antioxidants or mutations activating antioxidant metabolism promote cancer, highlighting a central role oxidative stress in tumorigenesis. However, it is unclear if oxidative stress ultimately increases to a point of cell death. Emerging evidence indicates that cancer cells are susceptible to ferroptosis, a form of cell death triggered by uncontrolled lipid peroxidation.

View Article and Find Full Text PDF

Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the Electron Transport Chain (ETC) Complex I, and we hypothesize that Complex I loss in ROs directly impairs mitophagy. Our analysis of ROs and normal kidney (NK) tissues shows that a significant portion (8 out of 17) of ROs have mtDNA Complex I loss-of-function mutations with high variant allele frequency (>50%).

View Article and Find Full Text PDF

Well-differentiated and dedifferentiated liposarcoma (WD/DD LPS) represent a pathological continuum, often coexisting within the same tumor. While the dedifferentiated component is clinically aggressive, marked by rapid growth and metastatic potential, the evolutionary relationship between WD and DD LPS remains unknown. To investigate this, we performed single-nucleus RNA sequencing on matched WD and DD tumor regions.

View Article and Find Full Text PDF

Adenocarcinomas from multiple tissues can converge to treatment-resistant small cell neuroendocrine (SCN) cancers composed of ASCL1, POU2F3, NEUROD1, and YAP1 subtypes. We investigated how mitochondrial metabolism influences SCN cancer (SCNC) progression. Extensive bioinformatics analyses encompassing thousands of patient tumors and human cancer cell lines uncovered enhanced expression of proliferator-activatedreceptor gamma coactivator 1-alpha (PGC-1α), a potent regulator of mitochondrial oxidative phosphorylation (OXPHOS), across several SCNCs.

View Article and Find Full Text PDF
Article Synopsis
  • mTORC1 activity in cancers relies on micronutrients like Asparagine (Asn), and targeting Asn metabolism may inhibit growth in well-differentiated and dedifferentiated liposarcoma (LPS).
  • Analysis showed that Asn levels are higher in dedifferentiated LPS, with associated mTORC1 signaling being more active, which is crucial for tumor progression.
  • A combination treatment of electron transport chain (ETC) inhibitors and Asn-free media reduced cell growth and nucleotide synthesis in LPS models, suggesting that this strategy, especially with PEGylated L-Asparaginase, effectively limits tumor growth.
View Article and Find Full Text PDF

Fibrolamellar carcinoma (FLC) is a rare, lethal, early-onset liver cancer with a critical need for new therapeutics. The primary driver in FLC is the fusion oncoprotein, DNAJ-PKAc, which remains challenging to target therapeutically. It is critical, therefore, to expand understanding of the FLC molecular landscape to identify druggable pathways/targets.

View Article and Find Full Text PDF

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol.

View Article and Find Full Text PDF

Unlabelled: Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases (NMT). Myristoylation is emerging as a promising cancer therapeutic target; however, the molecular determinants of sensitivity to NMT inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that NMTs are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS-mutant background.

View Article and Find Full Text PDF

Unlabelled: Adenocarcinomas from multiple tissues can evolve into lethal, treatment-resistant small cell neuroendocrine (SCN) cancers comprising multiple subtypes with poorly defined metabolic characteristics. The role of metabolism in directly driving subtype determination remains unclear. Through bioinformatics analyses of thousands of patient tumors, we identified enhanced PGC-1α-a potent regulator of oxidative phosphorylation (OXPHOS)-in various SCN cancers (SCNCs), closely linked with neuroendocrine differentiation.

View Article and Find Full Text PDF

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited.

View Article and Find Full Text PDF

Head and neck cancer is the sixth most common cancer in the world, with more than 300,000 deaths attributed to the disease annually. Aggressive surgical resection often with adjuvant chemoradiation is the cornerstone of treatment. However, the necessary chemoradiation treatment can result in collateral damage to adjacent vital structures causing a profound impact on quality of life.

View Article and Find Full Text PDF

LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Research on targeting glucose metabolism in cancer has faced challenges due to ineffective anti-glycolytic agents and limited understanding of different cancer types' glucose use.
  • A new compound, KL-11743, effectively inhibits class I glucose transporters, leading to decreased NADH levels and increased aspartate, indicating a shift to mitochondrial oxidative phosphorylation.
  • The study found that mutations in key metabolic pathways make certain tumors, particularly SDHA-deficient cancers, more susceptible to GLUT inhibitors like KL-11743, showing potential for targeted cancer therapies.
View Article and Find Full Text PDF

Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors.

View Article and Find Full Text PDF

Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT).

View Article and Find Full Text PDF

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited.

View Article and Find Full Text PDF

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression.

View Article and Find Full Text PDF

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity.

View Article and Find Full Text PDF

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [Kras (K), KrasTp53(KP), KrasTp53Lkb1 (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU).

View Article and Find Full Text PDF

MAPK targeting in cancer often fails due to MAPK reactivation. MEK inhibitor (MEKi) monotherapy provides limited clinical benefits but may serve as a foundation for combination therapies. Here, we showed that combining a type II RAF inhibitor (RAFi) with an allosteric MEKi durably prevents and overcomes acquired resistance among cancers with , and mutations.

View Article and Find Full Text PDF

Introduction: There are currently no approved targeted therapies for lung squamous-cell carcinoma (LSCC) and KRAS-mutant lung adenocarcinoma (LUAD). About 30% of LSCC and 25% of KRAS-mutant LUAD exhibit hyperactive NRF2 pathway activation through mutations in NFE2L2 (the gene encoding NRF2) or its negative regulator, KEAP1. Preclinical data demonstrate that these tumors are uniquely sensitive to dual inhibition of glycolysis and glutaminolysis via mammalian target of rapamycin (mTOR) and glutaminase inhibitors.

View Article and Find Full Text PDF