Yearb Med Inform
August 2024
Objectives: Large language models (LLMs) are revolutionizing the natural language pro-cessing (NLP) landscape within healthcare, prompting the need to synthesize the latest ad-vancements and their diverse medical applications. We attempt to summarize the current state of research in this rapidly evolving space.
Methods: We conducted a review of the most recent studies on biomedical NLP facilitated by LLMs, sourcing literature from PubMed, the Association for Computational Linguistics Anthology, IEEE Explore, and Google Scholar (the latter particularly for preprints).
Proc (IEEE Int Conf Healthc Inform)
June 2024
Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, approaches for incorporating CPGs into LLMs are not well studied. In this study, we develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP), and focus on CDS for COVID-19 outpatient treatment as the case study.
View Article and Find Full Text PDFWith the role of artificial intelligence (AI) in precision nutrition rapidly expanding, a scoping review on recent studies and potential future directions is needed. This scoping review examines: 1) the current landscape, including publication venues, targeted diseases, AI applications, methods, evaluation metrics, and considerations of minority and cultural factors; 2) common patterns in AI-driven precision nutrition studies; and 3) gaps, challenges, and future research directions. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) process, we extracted 198 articles from major databases using search keywords in 3 categories: precision nutrition, AI, and natural language processing.
View Article and Find Full Text PDFHousing is an environmental social determinant of health that is linked to mortality and clinical outcomes. We developed a lexicon of housing-related concepts and rule-based natural language processing methods for identifying these housing-related concepts within clinical text. We piloted our methods on several test cohorts: a synthetic cohort generated by ChatGPT for initial infrastructure testing, a cohort with substance use disorders (SUD), and a cohort diagnosed with problems related to housing and economic circumstances (HEC).
View Article and Find Full Text PDFObjectives: Alzheimer's disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence.
View Article and Find Full Text PDFA drug molecule is a substance that changes an organism's mental or physical state. Every approved drug has an indication, which refers to the therapeutic use of that drug for treating a particular medical condition. While the Large Language Model (LLM), a generative Artificial Intelligence (AI) technique, has recently demonstrated effectiveness in translating between molecules and their textual descriptions, there remains a gap in research regarding their application in facilitating the translation between drug molecules and indications (which describes the disease, condition or symptoms for which the drug is used), or vice versa.
View Article and Find Full Text PDFGenerative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, dynamic scheduling of follow-ups, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers.
View Article and Find Full Text PDFIn 2020, the U.S. Department of Defense officially disclosed a set of ethical principles to guide the use of Artificial Intelligence (AI) technologies on future battlefields.
View Article and Find Full Text PDFInt J Med Inform
September 2023
Rehabilitation research focuses on determining the components of a treatment intervention, the mechanism of how these components lead to recovery and rehabilitation, and ultimately the optimal intervention strategies to maximize patients' physical, psychologic, and social functioning. Traditional randomized clinical trials that study and establish new interventions face challenges, such as high cost and time commitment. Observational studies that use existing clinical data to observe the effect of an intervention have shown several advantages over RCTs.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
June 2023
Health literacy is the central focus of Healthy People 2030, the fifth iteration of the U.S. national goals and objectives.
View Article and Find Full Text PDFBackground: Natural language processing (NLP) has become an emerging technology in health care that leverages a large amount of free-text data in electronic health records to improve patient care, support clinical decisions, and facilitate clinical and translational science research. Recently, deep learning has achieved state-of-the-art performance in many clinical NLP tasks. However, training deep learning models often requires large, annotated data sets, which are normally not publicly available and can be time-consuming to build in clinical domains.
View Article and Find Full Text PDFCOVID-19 has resulted in an ongoing pandemic and as of 12 June 2020, has caused more than 7.4 million cases and over 418,000 deaths. The highly dynamic and rapidly evolving situation with COVID-19 has made it difficult to access accurate, on-demand information regarding the disease.
View Article and Find Full Text PDFObjective: As coronavirus disease 2019 (COVID-19) started its rapid emergence and gradually transformed into an unprecedented pandemic, the need for having a knowledge repository for the disease became crucial. To address this issue, a new COVID-19 machine-readable dataset known as the COVID-19 Open Research Dataset (CORD-19) has been released. Based on this, our objective was to build a computable co-occurrence network embeddings to assist association detection among COVID-19-related biomedical entities.
View Article and Find Full Text PDF