Granulomas are classic manifestations of tuberculosis pathogenesis. They result from an ensemble of immune responses to infection, but the identities, arrangement, cellular interactions, and regulation of the cells that comprise them have thus far been incompletely understood. To better understand the composition of granulomas, we conducted spatial and single-cell RNA sequencing of granulomas in biopsy specimens from patients with tuberculosis.
View Article and Find Full Text PDFUnlabelled: Mycobacterial granulomas lie at the center of tuberculosis (TB) pathogenesis and represent a unique niche where infecting bacteria survive in nutrient-restricted conditions and in the face of a host immune response. The granuloma's necrotic core, where bacteria reside extracellularly in humans, is difficult to assess in many experimentally tractable models. Here, using necrotic mycobacterial granulomas in adult zebrafish, we develop dual RNA-seq across different host genotypes to identify the transcriptional alterations that enable bacteria to survive within this key microenvironment.
View Article and Find Full Text PDFis a fish pathogen that has become a powerful and well-established model that has accelerated our understanding of the mechanisms of mycobacterial disease. is a versatile surrogate for understanding the closely related human pathogen , which causes tuberculosis in humans. has defined key mechanisms of pathogenesis, both shared with and unique to this species.
View Article and Find Full Text PDFTuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2.
View Article and Find Full Text PDFPLoS Pathog
February 2025
Pathogen evolution and genomic diversity are shaped by specific host immune pressures and therapeutic interventions. Analysis of the extant genomes of circulating strains of Mycobacterium tuberculosis, a leading cause of infectious mortality that has co-evolved with humans for thousands of years, can provide new insights into host-pathogen interactions that underlie specific aspects of pathogenesis and onward transmission. With the explosion in the number of fully sequenced M.
View Article and Find Full Text PDFBacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including and , the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections.
View Article and Find Full Text PDFTuberculosis (Edinb)
September 2023
The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes.
View Article and Find Full Text PDFUnlabelled: Bacterial pathogens use protein secretion systems to translocate virulence factors into the host and to control bacterial gene expression. The ESX-1 (ESAT-6 system 1) secretion system facilitates disruption of the macrophage phagosome during infection, enabling access to the cytoplasm, and regulates widespread gene expression in the mycobacterial cell. The transcription factors contributing to the ESX-1 transcriptional network during mycobacterial infection are not known.
View Article and Find Full Text PDFDuring mycobacterial infections, pathogenic mycobacteria manipulate both host immune and stromal cells to establish and maintain a productive infection. In humans, non-human primates, and zebrafish models of infection, pathogenic mycobacteria produce and modify the specialized lipid trehalose 6,6'-dimycolate (TDM) in the bacterial cell envelope to drive host angiogenesis toward the site of forming granulomas, leading to enhanced bacterial growth. Here, we use the zebrafish-Mycobacterium marinum infection model to define the signaling basis of the host angiogenic response.
View Article and Find Full Text PDFThe human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease.
View Article and Find Full Text PDFNecrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis.
View Article and Find Full Text PDFDuring the current COVID-19 pandemic, there has been renewed scientific and public focus on understanding the pathogenesis of infectious diseases and investigating vaccines and therapies to combat them. In addition to the tragic toll of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we also recognize increased threats from antibiotic-resistant bacterial strains, the effects of climate change on the prevalence and spread of human pathogens, and the recalcitrance of other infectious diseases - including tuberculosis, malaria, human immunodeficiency virus (HIV) and fungal infections - that continue to cause millions of deaths annually. Large amounts of funding have rightly been redirected toward vaccine development and clinical trials for COVID-19, but we must continue to pursue fundamental and translational research on other pathogens and host immunity.
View Article and Find Full Text PDFIn this issue of Immunity,Gideon et al. (2022) couple sophisticated single-cell analyses with detailed in vivo measurements of Mycobacterium tuberculosis granulomas to define the cellular and transcriptional properties of a successful host immune response during tuberculosis.
View Article and Find Full Text PDFMycobacterial granuloma formation involves significant stromal remodeling including the growth of leaky, granuloma-associated vasculature. These permeable blood vessels aid mycobacterial growth, as antiangiogenic or vascular normalizing therapies are beneficial host-directed therapies in preclinical models of tuberculosis across host-mycobacterial pairings. Using the zebrafish-Mycobacterium marinum infection model, we demonstrate that vascular normalization by inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP) decreases granuloma hypoxia, the opposite effect of hypoxia-inducing antiangiogenic therapy.
View Article and Find Full Text PDFImproved therapies for tuberculosis will require the careful revision of complex, multi-drug regimens. In this issue of Cell Systems, Larkins-Ford et al. integrate extensive dose-response measurements of drug combinations, in vivo animal data, and computational analysis to provide a new predictive framework for the prioritization of specific antitubercular drug regimens.
View Article and Find Full Text PDFThe central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition.
View Article and Find Full Text PDFCRISPR/Cas9-based tissue-specific knockout techniques are essential for probing the functions of genes in embryonic development and disease using zebrafish. However, the lack of capacity to perform gene-specific rescue or live imaging in the tissue-specific knockout background has limited the utility of this approach. Here, we report a robust and flexible gateway system for tissue-specific gene inactivation in neutrophils.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Adjunctive treatment with antiinflammatory corticosteroids like dexamethasone increases survival in tuberculosis meningitis. Dexamethasone responsiveness associates with a C/T variant in (), which regulates expression of the proinflammatory mediator leukotriene B (LTB). TT homozygotes, with increased expression of , have the highest survival when treated with dexamethasone and the lowest survival without.
View Article and Find Full Text PDFNearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease.
View Article and Find Full Text PDFBackground: Nontuberculous mycobacteria (NTM) are a rare cause of infectious tenosynovitis of the upper extremity. Using molecular methods, clinical microbiology laboratories are increasingly reporting identification down to the species level. Improved methods for speciation are revealing new insights into the clinical and epidemiologic features of rare NTM infections.
View Article and Find Full Text PDFLipids represent an important source of nutrition for infecting mycobacteria, accumulating within the necrotic core of granulomas and present in foamy macrophages associated with mycobacterial infection. In order to better understand the timing, process and importance of lipid accumulation, we developed methods for direct in vivo visualization and quantification of this process using the zebrafish-M. marinum larval model of infection.
View Article and Find Full Text PDFDiscussion on an unusual role for a cxcr3 receptor, in which it antagonizes a paralogous receptor to limit macrophage migration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Intestinal epithelial cell (IEC) shedding is a fundamental response to intestinal damage, yet underlying mechanisms and functions have been difficult to define. Here we model chronic intestinal damage in zebrafish larvae using the nonsteroidal antiinflammatory drug (NSAID) Glafenine. Glafenine induced the unfolded protein response (UPR) and inflammatory pathways in IECs, leading to delamination.
View Article and Find Full Text PDF