Publications by authors named "David J Lieb"

Monocytes and macrophages in patients with lupus nephritis exhibit altered behavior compared with healthy kidneys. How to optimally use mouse models to develop treatments targeting these cells is poorly understood. This study compared intrarenal myeloid cells in four mouse models and 155 lupus nephritis patients using single-cell profiling, spatial transcriptomics, and functional studies.

View Article and Find Full Text PDF

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin.

View Article and Find Full Text PDF

Overcoming intrinsic resistance to immune checkpoint blockade for microsatellite stable (MSS) colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) remains challenging. We conducted a single-arm, non-randomized, phase II trial (NCT03104439) combining radiation, ipilimumab and nivolumab to treat patients with metastatic MSS CRC (n = 40) and PDAC (n = 25) with an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. The primary endpoint was disease control rate (DCR) by intention to treat.

View Article and Find Full Text PDF

Background: FCGR2A binds antibody-antigen complexes to regulate the abundance of circulating and deposited complexes along with downstream immune and autoimmune responses. Although the abundance of FCRG2A may be critical in immune-mediated diseases, little is known about whether its surface expression is regulated through cis genomic elements and non-coding variants. In the current study, we aimed to characterize the regulation of FCGR2A expression, the impact of genetic variation and its association with autoimmune disease.

View Article and Find Full Text PDF

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors.

View Article and Find Full Text PDF

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells.

View Article and Find Full Text PDF

Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how SARS-CoV-2 affects the lungs at different severity levels by analyzing autopsy samples from 24 patients who died from the virus.
  • It identifies two categories of patients: those with high viral loads showing strong immune responses and specific macrophage types, and those with low viral loads exhibiting varied responses and signs of lung recovery.
  • The research also highlights that the spatial distribution of the virus and immune responses within the lungs is heterogeneous, with different patterns of interferon response genes linked to virus presence.
View Article and Find Full Text PDF

COVID-19 has caused over 1 million deaths globally, yet the cellular mechanisms underlying severe disease remain poorly understood. By analyzing several thousand plasma proteins in 306 COVID-19 patients and 78 symptomatic controls over serial timepoints using two complementary approaches, we uncover COVID-19 host immune and non-immune proteins not previously linked to this disease. Integration of plasma proteomics with nine published scRNAseq datasets shows that SARS-CoV-2 infection upregulates monocyte/macrophage, plasmablast, and T cell effector proteins.

View Article and Find Full Text PDF

The relationship of SARS-CoV-2 lung infection and severity of pulmonary disease is not fully understood. We analyzed autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter- and intra- patient heterogeneity of pulmonary virus infection. There was a spectrum of high and low virus cases that was associated with duration of disease and activation of interferon pathway genes.

View Article and Find Full Text PDF
Article Synopsis
  • Lupus nephritis is a serious illness where the body's defense system attacks the kidneys, and current treatments don't work very well and can be harmful.
  • Researchers looked at kidney samples from people with lupus nephritis and healthy people to understand what’s happening at a cellular level and found many different immune cell types involved in the disease.
  • They discovered that certain immune cells were active and may play a big role in moving around the body, and they also learned that testing urine could help doctors understand kidney conditions without needing to do more painful tests.
View Article and Find Full Text PDF

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)HLA-DRA sublining fibroblasts, IL1B pro-inflammatory monocytes, ITGAXTBX21 autoimmune-associated B cells and PDCD1 peripheral helper T (T) cells and follicular helper T (T) cells.

View Article and Find Full Text PDF

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors.

View Article and Find Full Text PDF

Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples.

View Article and Find Full Text PDF

Effective anti-tumour immunity in humans has been associated with the presence of T cells directed at cancer neoantigens, a class of HLA-bound peptides that arise from tumour-specific mutations. They are highly immunogenic because they are not present in normal tissues and hence bypass central thymic tolerance. Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response, their systematic discovery and evaluation only became feasible with the recent availability of massively parallel sequencing for detection of all coding mutations within tumours, and of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules.

View Article and Find Full Text PDF