Publications by authors named "David I Cook"

ZnT1 is a major zinc transporter that regulates cellular zinc homeostasis. We have previously shown that ZnT1 has additional functions that are independent of its activity as a Zn2+ extruder. These include inhibition of the L-type calcium channel (LTCC) through interaction with the auxiliary β-subunit of the LTCC and activation of the Raf-ERK signaling leading to augmented activity of the T-type calcium channel (TTCC).

View Article and Find Full Text PDF

One of the key pathophysiologies of H5N1 infection is excessive proinflammatory cytokine response (cytokine storm) characterized by increases in IFN-β, TNF-α, IL-6, CXCL10, CCL4, CCL2 and CCL5 in the respiratory tract. H5N1-induced cytokine release can occur via an infection-independent mechanism, however, detail of the cellular signaling involved is poorly understood. To elucidate this mechanism, the effect of inactivated (β-propiolactone-treated) H5N1 on the cytokine and chemokine mRNA expression in 16HBE14o- human respiratory epithelial cells was investigated.

View Article and Find Full Text PDF

Traditionally, proteins are considered to perform a single role, be it as an enzyme, a channel, a transporter or as a structural scaffold. However, recent studies have described moonlighting proteins that perform distinct and independent functions; for example, TRPM7 is both an ion channel and a kinase. ZnT-1 is a member of the Carrier Diffusion Facilitator family that is expressed throughout the phylogenetic tree from bacteria to humans.

View Article and Find Full Text PDF

Objective: To distinguish the effects of dietary fat profile on gut parameters and their relationships with metabolic changes and to determine the capacity of n-3 fatty acids to modify gut variables in the context of diet-induced metabolic dysfunctions.

Methods: Mice received control or high-fat diets emphasizing saturated (HFD-sat), n-6 (HFD-n6), or n-3 (HFD-n3) fatty acids for 8 weeks. In another cohort, mice that were maintained on HFD-sat received n-3-rich fish oil or resolvin D1 supplementation.

View Article and Find Full Text PDF

The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current.

View Article and Find Full Text PDF

ZnT-1 is a Cation Diffusion Facilitator (CDF) family protein, and is present throughout the phylogenetic tree from bacteria to humans. Since its original cloning in 1995, ZnT-1 has been considered to be the major Zn(2+) extruding transporter, based on its ability to protect cells against zinc toxicity. However, experimental evidence for ZnT-1 induced Zn(2+) extrusion was not convincing.

View Article and Find Full Text PDF

We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured.

View Article and Find Full Text PDF

One unique physiological characteristic of frogs is that their main route for intake of water is across the skin. In these animals, the skin acts in concert with the kidney and urinary bladder to maintain electrolyte homeostasis. Water absorption across the skin is driven by the osmotic gradient that develops as a consequence of solute transport.

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) is essential for sodium homoeostasis in many epithelia. ENaC activity is required for lung fluid clearance in newborn animals and for maintenance of blood volume and blood pressure in adults. In vitro studies show that the ubiquitin ligase Nedd4-2 ubiquitinates ENaC to regulate its cell surface expression.

View Article and Find Full Text PDF

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na(+) absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC.

View Article and Find Full Text PDF

Rotavirus infection is the most frequent cause for severe diarrhea in infants, killing more than 600,000 every year. The nonstructural protein NSP4 acts as a rotavirus enterotoxin, inducing secretory diarrhea without any structural organ damage. Electrolyte transport was assessed in the colonic epithelium from pups and adult mice using Ussing chamber recordings.

View Article and Find Full Text PDF

Lung complications during malaria infection can range from coughs and impairments in gas transfer to the development of acute respiratory distress syndrome (ARDS). Infecting C57BL/6 mice with Plasmodium berghei K173 strain (PbK) resulted in pulmonary oedema, capillaries congested with leukocytes and infected red blood cells (iRBCs), and leukocyte infiltration into the lungs. This new model of malaria-associated lung pathology, without any accompanying cerebral complications, allows the investigation of mechanisms leading to the lung disease.

View Article and Find Full Text PDF

We have previously reported that P2Y(2) purinoceptors and muscarinic M(3) receptors trigger Ca(2+) responses in HT-29 cells that differ in their timecourse, the Ca(2+) response to P2Y(2) receptor activation being marked by a more rapid decline of intracellular Ca(2+) concentration ([Ca(2+)](i)) after the peak response and that this rapid decline of [Ca(2+)](i) was slowed in cells expressing heterologous beta-adrenergic receptor kinase (betaARK). In the present study, we demonstrate that, during P2Y(2) receptor activation, betaARK expression increases the rate of Gd(3+)-sensitive Mn(2+) influx, a measure of the rate of store-operated Ca(2+) entry from the extracellular space, during P2Y(2) activation and that this effect of betaARK is mimicked by exogenous alpha-subunits of G(q), G(11) and G(i2). The effect of betaARK on the rate of Mn(2+) influx is thus attributable to its ability to scavenge G protein betagamma-subunits released during activation of P2Y(2) receptor.

View Article and Find Full Text PDF

1. The epithelial Na(+) channel (ENaC) is a major conductive pathway that transports Na(+) across the apical membrane of the distal nephron, the respiratory tract, the distal colon and the ducts of exocrine glands. The ENaC is regulated by hormonal and humoral factors, including extracellular nucleotides that are available from the epithelial cells themselves.

View Article and Find Full Text PDF

It has recently been shown that the epithelial Na(+) channel (ENaC) is compartmentalized in caveolin-rich lipid rafts and that pharmacological depletion of membrane cholesterol, which disrupts lipid raft formation, decreases the activity of ENaC. Here we show, for the first time, that a signature protein of caveolae, caveolin-1 (Cav-1), down-regulates the activity and membrane surface expression of ENaC. Physical interaction between ENaC and Cav-1 was also confirmed in a coimmunoprecipitation assay.

View Article and Find Full Text PDF

1. The epithelial sodium channel (ENaC) is tightly regulated by hormonal and humoral factors, including cytosolic ion concentration and glucocorticoid and mineralocorticoid hormones. Many of these regulators of ENaC control its activity by regulating its surface expression via neural precursor cell-expressed developmentally downregulated (gene 4) protein (Nedd4-2).

View Article and Find Full Text PDF
Article Synopsis
  • The epithelial sodium channel (ENaC) is crucial for sodium absorption, fluid balance, and blood pressure regulation, and its activity is influenced by insulin.
  • In this study, researchers found that the kinases Akt and Sgk enhance ENaC activity when overexpressed, whereas a dominant-negative Akt variant decreases its activity.
  • Additionally, the inhibition of these kinases impairs both the basal and insulin-stimulated ENaC activity, while their overexpression counters the inhibitory effects of a protein called Nedd4-2 on ENaC function.
View Article and Find Full Text PDF

Regulation of the epithelial sodium channel (ENaC) is highly complex and may involve several aldosterone-induced regulatory proteins. The N-Myc downstream-regulated gene 2 (NDRG2) has been identified as an early aldosterone-induced gene. Therefore, we hypothesized that NDRG2 may affect ENaC function.

View Article and Find Full Text PDF

Epithelial Na(+) channels (ENaC) mediate the transport of sodium (Na) across epithelia in the kidney, gut, and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4 and Nedd4-2, which bind to proline-rich motifs (PY motifs) present in the C-termini of ENaC subunits. Loss of inhibition leads to hypertension.

View Article and Find Full Text PDF

In previous studies, we have shown that two major respiratory pathogens, influenza virus and parainfluenza virus, produce acute alterations in ion transport upon contacting the apical membrane of the respiratory epithelium. In the present study, we examine the effects on ion transport by the mouse tracheal epithelium of a third major respiratory pathogen, respiratory syncytial virus (RSV). RSV infections are associated with fluid accumulation in the respiratory tract and cause illnesses that range in severity from rhinitis, sinusitis, otitis media, and bronchitis to bronchiolitis and pneumonia.

View Article and Find Full Text PDF

Motivation: Epithelial Na(+) channels (ENaC) mediate the transport of sodium (Na) across epithelia in the kidney, gut and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4-2. These ligases bind to proline-rich motifs (PY motifs) present in the C-termini of ENaC subunits.

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) is the major mediator of sodium transport across the apical membranes of the distal nephron, the distal colon, the respiratory tract and the ducts of exocrine glands. It is subject to feedback inhibition by increased intracellular Na+, a regulatory system wherein the ubiquitin protein ligases, Nedd4 and Nedd4-2, bind to conserved PY motifs in the C-termini of ENaC and inactivate the channel. It has been proposed recently that the kinase Sgk activates the channel as a consequence of phosphorylating Nedd4-2, thus preventing it from inhibiting the channels.

View Article and Find Full Text PDF

Nedd4 and Nedd4-2 are closely related HECT-type ubiquitin-protein ligases (E3) implicated in the regulation of a number of proteins and pathways. Given the close homology between these E3 enzymes it would be predicted that a conserved ubiquitin-conjugating enzyme (E2) specificity exists between the two proteins. However, E2 specificities for Nedd4 and Nedd4-2 are not well established.

View Article and Find Full Text PDF

Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl(-) channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2.

View Article and Find Full Text PDF

Parainfluenza viruses are important causes of respiratory disease in both children and adults. In particular, they are the major cause of the serious childhood illness croup (laryngotracheobronchitis). The infections produced by parainfluenza viruses are associated with the accumulation of ions and fluid in the respiratory tract.

View Article and Find Full Text PDF