We report 2 cases of fetal total anomalous pulmonary venous drainage (TAPVD) diagnosed in subsequent pregnancies in the same patient. In the first pregnancy, supracardiac TAPVD with obstruction at the ascending vein was identified at 20 weeks. Three-dimensional (3D) motion-corrected fetal cardiac magnetic resonance imaging (MRI) aided visualization of the venous pathway and revealed subtle T2-weighted lung heterogeneity, suggesting secondary pulmonary lymphangiectasia.
View Article and Find Full Text PDFBackground: Altered structural brain development has been identified in fetuses with congenital heart disease (CHD), suggesting that the neurodevelopmental impairment observed later in life might originate in utero. There are many interacting factors that may perturb neurodevelopment during the fetal period and manifest as structural brain alterations, such as altered cerebral substrate delivery and aberrant fetal hemodynamics.
Methods And Results: We extracted structural covariance networks from the log Jacobian determinants of 435 in utero T2 weighted image magnetic resonance imaging scans, (n=67 controls, 368 with CHD) acquired during the third trimester.
Accurate prenatal diagnosis of coarctation of the aorta (CoA) is challenging due to high false positive rate burden and poorly understood aetiology. Despite associations with abnormal blood flow dynamics, fetal arch anatomy changes and alterations in tissue properties, its underlying mechanisms remain a longstanding subject of debate hindering diagnosis in utero. This study leverages computational fluid dynamics (CFD) simulations and statistical shape modelling to investigate the interplay between fetal arch anatomy and blood flow alterations in CoA.
View Article and Find Full Text PDFJ Magn Reson Imaging
March 2025
Background: Congenital heart disease (CHD) has been linked to impaired placental and fetal brain development. Assessing the placenta and fetal brain in parallel may help further our understanding of the relationship between development of these organs.
Hypothesis: 1) Placental and fetal brain oxygenation are correlated, 2) oxygenation in these organs is reduced in CHD compared to healthy controls, and 3) placental structure is altered in CHD.
Background: In double aortic arch (DAA), one of the arches can demonstrate atretic portions postnatally, leading to diagnostic uncertainty due to overlap with isolated right aortic arch (RAA) variants. The main objective of this study is to demonstrate the morphological evolution of different DAA phenotypes from prenatal to postnatal life using three-dimensional (3D) fetal cardiac magnetic resonance (CMR) imaging and postnatal computed tomography (CT)/CMR imaging.
Methods: Three-dimensional fetal CMR was undertaken in fetuses with suspected DAA over a 6-year period (January 2016-January 2022).
J Magn Reson Imaging
August 2024
Background: Congenital heart disease (CHD) is common and is associated with impaired early brain development and neurodevelopmental outcomes, yet the exact mechanisms underlying these associations are unclear.
Purpose: To utilize MRI data from a cohort of fetuses with CHD as well as typically developing fetuses to test the hypothesis that expected cerebral substrate delivery is associated with total and regional fetal brain volumes.
Study Type: Retrospective case-control study.
J Cardiovasc Magn Reson
December 2022
Background: Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability.
Methods: In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy.
Neonatal coarctation of the aorta (CoA) is a common congenital heart defect. Its antenatal diagnosis remains challenging, and its pathophysiology is poorly understood. We present a novel statistical shape modeling (SSM) pipeline to study the role and predictive value of arch shape in CoA in utero.
View Article and Find Full Text PDFAntenatal diagnosis of abnormal pulmonary development has improved significantly over recent years because of progress in imaging techniques. Two-dimensional ultrasound is the mainstay of investigation of pulmonary pathology during pregnancy, providing good prognostication in conditions such as congenital diaphragmatic hernia; however, it is less validated in other high-risk groups such as those with congenital pulmonary airway malformation or preterm premature rupture of membranes. Three-dimensional assessment of lung volume and size is now possible using ultrasound or magnetic resonance imaging; however, the use of these techniques is still limited because of unpredictable fetal motion, and such tools have also been inadequately validated in high-risk populations other than those with congenital diaphragmatic hernia.
View Article and Find Full Text PDFSlice-to-volume registration (SVR) methods allow reconstruction of high-resolution 3D images from multiple motion-corrupted stacks. SVR-based pipelines have been increasingly used for motion correction for T2-weighted structural fetal MRI since they allow more informed and detailed diagnosis of brain and body anomalies including congenital heart defects (Lloyd et al., 2019).
View Article and Find Full Text PDFThe impact of fetal motion on phase contrast magnetic resonance imaging (PC-MRI) with metric optimized gating (MOG) remains unknown, despite being a known limitation to prenatal MRI. This study aims to describe the effect of motion on fetal flow-measurements using PC-MRI with MOG and to generate a scoring-system that could be used to predict motion-corrupted datasets at the time of acquisition. Ten adult volunteers underwent PC-MRI with MOG using a motion-device to simulate reproducible in-plane motion encountered in fetuses.
View Article and Find Full Text PDFBackground: Identifying fetuses at risk of severe neonatal coarctation of the aorta (CoA) can be lifesaving but is notoriously challenging in clinical practice with a high rate of false positives. Novel fetal 3-dimensional and phase-contrast magnetic resonance imaging (MRI) offers an unprecedented means of assessing the human fetal cardiovascular system before birth. We performed detailed MRI assessment of fetal vascular morphology and flows in a cohort of fetuses with suspected CoA, correlated with the need for postnatal intervention.
View Article and Find Full Text PDFDeep neural networks exhibit limited generalizability across images with different entangled domain features and categorical features. Learning generalizable features that can form universal categorical decision boundaries across domains is an interesting and difficult challenge. This problem occurs frequently in medical imaging applications when attempts are made to deploy and improve deep learning models across different image acquisition devices, across acquisition parameters or if some classes are unavailable in new training databases.
View Article and Find Full Text PDFPrenatal detection of congenital heart disease facilitates the opportunity for potentially life-saving care immediately after the baby is born. Echocardiography is routinely used for screening of morphological malformations, but functional measurements of blood flow are scarcely used in fetal echocardiography due to technical assumptions and issues of reliability. Magnetic resonance imaging (MRI) is readily used for quantification of abnormal blood flow in adult hearts, however, existing in utero approaches are compromised by spontaneous fetal motion.
View Article and Find Full Text PDFObjective: To explore the role of antenatal counselling in how parents make treatment decisions following an antenatal diagnosis of Hypoplastic Left Heart Syndrome (HLHS).
Background: Antenatal counselling is a critical part of patient management following a diagnosis of fetal congenital heart disease; however, there is a very limited evidence base examining how parents actually experience antenatal counselling and make decisions in this context.
Methods: Semi-structured interviews were conducted with women who had received an antenatal diagnosis of HLHS.
Magn Reson Med
September 2019
Purpose: To develop an MRI acquisition and reconstruction framework for volumetric cine visualization of the fetal heart and great vessels in the presence of maternal and fetal motion.
Methods: Four-dimensional (4D) depiction was achieved using a highly-accelerated multi-planar real-time balanced steady-state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronization and outlier rejection. The framework was validated using a numerical phantom and evaluated in a study of 20 mid- to late-gestational age human fetal subjects (23-33 weeks gestational age).
Background: Two-dimensional (2D) ultrasound echocardiography is the primary technique used to diagnose congenital heart disease before birth. There is, however, a longstanding need for a reliable form of secondary imaging, particularly in cases when more detailed three-dimensional (3D) vascular imaging is required, or when ultrasound windows are of poor diagnostic quality. Fetal MRI, which is well established for other organ systems, is highly susceptible to fetal movement, particularly for 3D imaging.
View Article and Find Full Text PDFCirc Cardiovasc Imaging
December 2018
Background: Recent advances in cardiovascular magnetic resonance (CMR) imaging have facilitated CINE imaging of the fetal heart. In this work, a preliminary investigation of the utility of multislice CINE CMR for assessing fetal congenital heart disease is performed and compared with echocardiography.
Methods And Results: Multislice CINE CMR and echocardiography images were acquired in 25 pregnant women wherein the fetus had a suspected congenital heart defect based on routine obstetric ultrasound.
A comprehensive understanding of the native pulmonary blood supply is crucial in newborns with pulmonary atresia with ventricular septal defect and aortopulmonary collaterals (PA/VSD/MAPCA). We sought to describe the accuracy in terms of identifying native pulmonary arteries, radiation dose and anaesthetic time associated with multi-modality imaging in these patients, prior to their first therapeutic intervention. Furthermore, we wanted to evaluate the cumulative radiations dose and anaesthetic time over the study period.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2017
In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection.
View Article and Find Full Text PDFCardiol Young
February 2018
Persistence of the embryonic "fifth aortic arch" in postnatal life is a rare, enigmatic - and at times controversial - condition, with variable anatomical forms and physiological consequences. First described in humans over 40 years ago by Van Praagh, the condition was labelled the "great pretender" by Gerlis 25 years later, because of its apparent propensity to mimic anatomically similar structures. Despite many subsequent case reports citing the condition, the true developmental origin of these structures remains unresolved, and has been the subject of debate among embryologists for more than a century.
View Article and Find Full Text PDFPurpose: Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion.
Methods: The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image-based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user-defined region of interest delineating the fetal heart.
IEEE Trans Vis Comput Graph
June 2017
The human placenta is essential for the supply of the fetus. To monitor the fetal development, imaging data is acquired using (US). Although it is currently the gold-standard in fetal imaging, it might not capture certain abnormalities of the placenta.
View Article and Find Full Text PDF