Publications by authors named "David Cotan"

Research Question: Does the application of a micro-dose of copper chloride gel increase endometrial production of vascular endothelial growth factor (VEGF) without compromising endometrial function or producing embryo toxicity?

Design: An estimate of optimal dose was made based on cell culture studies. Ten healthy participants received an initial uterine application of placebo gel, followed by copper chloride gel (37.5 μM, 75 μM, or 150 μM dose) in a later hormone replacement cycle.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a highly prevalent chronic disease. About 4.7% of the world's population suffers from generalized pain and hypersensitivity, in addition to a wide range of physical and psychological symptoms.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a complex disease that is characterized by chronic musculoskeletal pain and has great economic impact. FM prevalence is about 2% to 4% worldwide, affecting mainly middle-aged women, and its complex pathophysiology complicates diagnosis, treatment and the findings of solid biomarkers. Previous studies have suggested an association between the disease and oxidative stress, mitochondrial metabolism, intestinal microbiota and inflammation, providing sufficient data to support the multifactorial origin of FM.

View Article and Find Full Text PDF

Fibromyalgia is a widespread chronic condition characterized by pain and fatigue. Among the long list of physiological disturbances linked to this syndrome, mitochondrial imbalance and oxidative stress stand out. Recently, the crosstalk between mitochondria and intestinal microbiota has caught the attention of biomedical researchers, who have found connections between this axis and several inflammatory and pain-related conditions.

View Article and Find Full Text PDF

Purpose: To analyse the effect of ulipristal acetate (UPA) as emergency contraception (EC) on the gene expression of human endometrial cell line (HEC-1A) and endometrium from fertile women treated with UPA after ovulation.

Materials And Methods: HEC-1A cells were treated with UPA, and endometrial tissue from four healthy women was collected in cycles before, during and 2 months after post-ovulation pill intake. Ovulation and luteal phase were monitored, and endometrial biopsies were obtained at day LH + 7 in each cycle.

View Article and Find Full Text PDF

Malignancies such as lung, breast and pancreatic carcinomas are associated with increased expression of the epidermal growth factor receptor, EGFR, and its role in the pathogenesis and progression of tumors has made this receptor a prime target in the development of antitumor therapies. In therapies targeting EGFR, the development of resistance owing to mutations and single nucleotide polymorphisms, and the expression of the receptor ligands themselves are very serious issues. In this work, both the ligand neuregulin and a bispecific antibody fragment to EGFR are conjugated separately or together to the same drug-delivery system to find the most promising candidate.

View Article and Find Full Text PDF

Background: Fibromyalgia (FM) is a common chronic pain disease, whose pathogenic mechanism still remains elusive. Oxidative stress markers and impaired bioenergetics homeostasis have been proposed as relevant events in the pathogenesis of the disease. Hence, the aim of the study is to analyse the potential biomarkers of mitochondrial imbalance in FM patients along with coenzyme Q10 (CoQ10) as a possible treatment.

View Article and Find Full Text PDF

Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q (CoQ) deficiency, suggesting dysregulation of the mevalonate pathway.

View Article and Find Full Text PDF

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment.

View Article and Find Full Text PDF

Background: Cathepsin C (CatC) is a lysosomal enzyme involved in activation of serine proteases from immune and inflammatory cells. Several loss-of-function mutations in the CatC gene have been shown to be the genetic mark of Papillon-Lefèvre syndrome (PLS), a rare autosomal recessive disease characterized by severe early-onset periodontitis, palmoplantar hyperkeratosis, and increased susceptibility to infections. Deficiencies or dysfunction in other cathepsin family proteins, such as cathepsin B or D, have been associated with autophagic and lysosomal disorders.

View Article and Find Full Text PDF

During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN).

View Article and Find Full Text PDF

Intrauterine devices (IUDs) have been widely used to prevent pregnancies with great efficacy during decades. It has been demonstrated that IUD alters the endometrial gene expression, but there is no scientific data about how copper, a metal commonly used in these devices, by itself, is able to influence the processes of endometrial receptivity and apoptosis in decidualized human endometrial stromal cells. Five endometrial samples were obtained from fertile women and processed by a standard protocol to obtain human endometrial stromal cells for in vitro studies.

View Article and Find Full Text PDF
Article Synopsis
  • - Lysosomal storage diseases (LSDs) are rare inherited metabolic disorders caused by a lack of lysosomal enzymes, leading to the build-up of undigested materials in cells, particularly impacting the central nervous system and causing neurodegeneration.
  • - The accumulation of substances in LSDs disrupts lysosomal function and contributes to issues such as impaired autophagy, mitochondrial dysfunction, and increased inflammation, which can ultimately lead to cell death.
  • - Gaucher disease (GD) is the most common LSD, caused by mutations affecting the β-glucocerebrosidase enzyme, leading to toxic accumulations in macrophages and organs, and is associated with mitochondrial dysfunction, which is a focus of current research in understanding LSD
View Article and Find Full Text PDF
Article Synopsis
  • * Disruptions in mitochondrial dynamics can lead to various neuropathies, such as Charcot-Marie-Tooth disease and dominant optic atrophy, highlighting their importance in neurological health.
  • * Understanding mitochondrial dynamics can reveal insights into mitochondrial-related diseases like diabetes and heart failure, and it also creates new possibilities for developing treatments.
View Article and Find Full Text PDF

Background: Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease.

View Article and Find Full Text PDF

Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells.

View Article and Find Full Text PDF
Article Synopsis
  • AMPK in eukaryotic cells acts as an energy sensor, promoting ATP production through catabolic pathways while inhibiting processes that consume ATP, impacting cell growth and autophagy.
  • Recent findings have linked AMPK to the regulation of apoptosis, but the exact mechanisms behind how it affects cell death remain unclear.
  • The chapter discusses AMPK's role in responding to cellular stress and the therapeutic potential in diseases like diabetes and cancer, suggesting that more research is needed to fully understand AMPK activation mechanisms.
View Article and Find Full Text PDF

Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis.

View Article and Find Full Text PDF

Background: The molecular crosstalk between inflammation and autophagy is an emerging field of research that is essential for the understanding of multicellular organism homeostasis and how these processes influence a variety of pathological conditions.

Objective: In this review, we briefly describe the relationship between autophagy and inflammasome activation. The central role that mitochondria play in both cellular processes is also discussed.

View Article and Find Full Text PDF

Introduction. Symptoms of mitochondrial diseases and chronic fatigue syndrome (CFS) frequently overlap and can easily be mistaken. Methods.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) has emerged as an important sensor of signals that control cellular energy balance in all eukaryotes. AMPK is also involved in fatty acid oxidation, glucose transport, antioxidant defense, mitochondrial biogenesis and the modulation of inflammatory processes. The numerous roles of AMPK in cell physiological and pathological states justified the notable increase in the number of publications in previous years, with almost 1500 scientific articles relative to this kinase in 2014.

View Article and Find Full Text PDF

Background: Fibromyalgia (FM) is a worldwide diffuse musculoskeletal chronic pain condition that affects up to 5% of the general population. Many symptoms associated with mitochondrial diseases are reported in patients with FM such as exercise intolerance, fatigue, myopathy and mitochondrial dysfunction. In this study, we report a mutation in cytochrome b gene of mitochondrial DNA (mtDNA) in a family with FM with inflammasome complex activation.

View Article and Find Full Text PDF

Introduction: Mitochondrial diseases are a group of rare genetic diseases with complex and heterogeneous origins which manifest a great variety of phenotypes. Disruption of the oxidative phosphorylation system is the main cause of pathogenicity in mitochondrial diseases since it causes accumulation of reactive oxygen species (ROS) and ATP depletion.

Areas Covered: Current evidences support the main protective role of autophagy and mitophagy in mitochondrial diseases and other diseases associated with mitochondrial dysfunction.

View Article and Find Full Text PDF