J Microbiol Biol Educ
December 2024
J Microbiol Biol Educ
December 2024
Curricular guidelines promote standardized approaches to coverage of essential knowledge and skills in undergraduate education. The American Society for Microbiology (ASM) Curriculum Guidelines for Undergraduate Microbiology were developed in 2012. Continuous, rapid growth of knowledge in science and a dynamic, changing world necessitate updates to these guidelines.
View Article and Find Full Text PDFJ Microbiol Biol Educ
April 2024
Course-based undergraduate research experiences (CUREs) can reduce barriers to research opportunities while increasing student knowledge and confidence. However, the number of widely adopted, easily transferable CUREs is relatively small. Here, we describe a CURE aimed at determining the function of poorly characterized genes.
View Article and Find Full Text PDFCruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored.
View Article and Find Full Text PDFCurriculum guidelines for virology are needed to best guide student learning due to the continuous and ever-increasing volume of virology information, the need to ensure that undergraduate and graduate students have a foundational understanding of key virology concepts, and the importance in being able to communicate that understanding to both other virologists and nonvirologists. Such guidelines, developed by virology educators and the American Society for Virology Education and Career Development Committee, are described herein.
View Article and Find Full Text PDFThe pervasive effects of the current coronavirus disease 2019 pandemic are but one reason for educators to refocus their efforts on virology teaching. Additionally, it is critical to understand how viruses function and to elucidate the relationship between virus and host. An understanding of current virology education may improve pedagogical approaches for educating our students and trainees.
View Article and Find Full Text PDFBiochem Mol Biol Educ
July 2021
With the growing importance of the field of RNA biology, undergraduates need to perform RNA-related research. Systematic evolution of ligands by exponential enrichment (SELEX) has become an important method in RNA biology. The principles of SELEX were applied to a semester-long course-based undergraduate research experience (CURE) in which two rounds of in vivo functional selection of regions of a viral RNA were performed.
View Article and Find Full Text PDFNoncoding RNAs use their sequence and/or structure to mediate function(s). The 5' portion (166 nt) of the 356-nt noncoding satellite RNA C (satC) of Turnip crinkle virus (TCV) was previously modeled to contain a central region with two stem-loops (H6 and H7) and a large connecting hairpin (H2). We now report that in vivo functional selection (SELEX) experiments assessing sequence/structure requirements in H2, H6, and H7 reveal that H6 loop sequence motifs were recovered at nonrandom rates and only some residues are proposed to base-pair with accessible complementary sequences within the 5' central region.
View Article and Find Full Text PDFThe 356 nt noncoding satellite RNA C (satC) of Turnip crinkle virus (TCV) is composed of 5' sequences from a second TCV satRNA (satD) and 3' sequences derived from TCV. SHAPE structure mapping revealed that 76 nt in the poorly-characterized satD-derived region form an extended hairpin (H2). Pools of satC in which H2 was replaced with 76, 38, or 19 random nt were co-inoculated with TCV helper virus onto plants and satC fitness assessed using in vivo functional selection (SELEX).
View Article and Find Full Text PDFA faculty position at a primarily undergraduate institution requires working with undergraduates in both the classroom and the research lab. Graduate students and postdoctoral fellows who are interested in such a career should understand that faculty at these institutions need to teach broadly and devise research questions that can be addressed safely and with limited resources compared to a research I university. Aspects of, and ways to prepare for, this career will be reviewed herein.
View Article and Find Full Text PDFSatellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3'-half shares high sequence similarity with the TCV 3' end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation.
View Article and Find Full Text PDFATP(CTP) : tRNA nucleotidyltransferase catalyses the posttranscriptional addition of cytidine, cytidine and adenosine to the 3' ends of tRNAs. Previously, a temperature-sensitive phenotype in Saccharomyces cerevisiae resulting from a mutation in the CCA1 gene coding for this enzyme was identified. Here, we show that a single guanine-to-adenine transition in cca1-1 generates the temperature-sensitive phenotype.
View Article and Find Full Text PDFDNA microarrays have significantly impacted the study of gene expression on a genome-wide level but also have forced a more global consideration of research questions. As such, it has become critical to introduce undergraduate students to genomics approaches to research. A challenge with performing a DNA microarray experiment in the teaching lab is determining the time required for the study and how to handle the voluminous data generated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
Positive-strand RNA viruses are the largest virus class and include many pathogens such as hepatitis C virus and the severe acute respiratory syndrome coronavirus (SARS). Brome mosaic virus (BMV) is a representative positive-strand RNA virus whose RNA replication, gene expression, and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. By using traditional yeast genetics, host genes have been identified that function in controlling BMV translation, selecting BMV RNAs as replication templates, activating the replication complex, maintaining a lipid composition required for membrane-associated RNA replication, and other steps.
View Article and Find Full Text PDF